Контрольная: Тектоника плит - текст контрольной. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Контрольная

Тектоника плит

Банк рефератов / Экология, охрана природы

Рубрики  Рубрики реферат банка

закрыть
Категория: Контрольная работа
Язык контрольной: Русский
Дата создания: 2011
Дата добавления:   
 
Скачать
Microsoft Word, 473 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной работы
Текст
Факты использования контрольной

Узнайте стоимость написания уникальной работы

Содержание

Введение

Глава 1 Терминология Тектоники плит

1.1 История теории

1.2 Основные понятия

1.2.1 Сила, двигающая плиты

1.2.2 Дивергентные границы или границы раздвижения плит

1.2.3 Конвергентные границы

1.2.4 Трансформные границы

1.2.5 Внутриплитные процессы

ГЛАВА 2 Тектоника плит как система наук.

2.1 Карта тектонических плит

Заключение

Список литературы

Введение.

ТЕКТОНИКА – от греческого tektonike – строительное искусство. Первая попытка научно объяснить деформацию пластов горных пород была сделана в 18 в. А. Г. Вернером в гипотезе нептунизма, которая рассматривала нарушения горизонтального залегания слоев как результат подводных оползней или обвалов. Тогда же была выдвинута гипотеза плутонизма Дж. Геттона. в основе которой лежала идея о преобладании в развитии Земли вертикальных поднятий. Эта идея была развита в первой четверти 19 в. немецким учёными Л. Бухом. А. Гумбольдтом и Б. Штудером, которые объясняли образование складчатых горных сооружений подъёмом магмы при вулканических и интрузивно-магматических процессах (гипотеза «кратеров поднятия»). Однако такое объяснение оказалось недостаточным, и во 2-й половине 19 — начале 20 вв. почти всеобщее признание получила контракционная гипотеза, в разработке которой принимали участие Л. Эли де Бомон. А. Гейм, Э. Зюсс. Х. Джефрис, а из русских геологов — А. П. Карпинский, Ф. Н. Чернышев, И. В. Мушкетов, А. П. Павлов, К. И. Богданович. Контракционная гипотеза исходила из представления о первоначально расплавленной и постепенно охлаждающейся Земле (космогоническая гипотеза Канта — Далласа). Тектонические деформации она объясняла охлаждением Земли и сокращением её радиуса; смятие слоев в складки рассматривалось как результат сжатия под действием горизонтальных сил, возникающих в земной коре при сокращении размеров планеты. Однако открытие радиоактивности горных пород поставило под сомнение исходное положение контракционной гипотезы — об изначально расплавленной и охлаждающейся Земле. Было показано, что тепловая энергия, выделяемая при радиоактивном распаде, компенсирует (возможно даже с избытком) потерю тепла Землёй. В 1-й половине 20 в. на смену контракционной гипотезе выдвигаются гипотезы глубинной дифференциации, подкоровых течений, пульсационная, перемещения (дрейфа) материков, расширения Земли.

Цель моей контрольной работы -  раскрыть основные понятия глобальной тектоники и рассмотреть тектонику плит, как систему наук.

Глава 1 Терминология тектоники плит

1.1 История теории

Объединение мобилизма, спрединга, субдукции со старой теорией дрейфа материков породило современную теорию тектоники плит, которая вскоре стала общепринятой концепцией в науках о Земле .

Тектоника плит — современная геологическая теория о движении литосферы . Она утверждает, что земная кора состоит из относительно целостных блоков — плит , которые находятся в постоянном движении друг относительно друга. При этом в зонах расширения ( срединно-океанических хребтах и континентальных рифтах) в результате спрединга ( англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора , а старая поглощается в зонах субдукции . Теория объясняет землетрясения , вулканическую деятельность и горообразование , большая часть которых приурочена к границам плит.

Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения. Первоначально было выделено несколько литосферных плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все они, кроме Тихоокеанской, чисто океанической, включают в себя части как с континентальной, так и океанической корой. И дрейф континентов в рамках этой концепции - не более чем их пассивное перемещение вместе с литосферными плитами.

В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии - астеносфере, со скоростью от 1-2 до 10-12 см в год. В большинстве своем они включают как континентальные массы с корой, условно называемой «гранитной», так и участки с корой океанической, условно называемой «базальтовой» и образованной породами с низким содержанием кремнезема.

Учёным совершенно не ясно, куда движутся и движутся ли материки вообще, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, — все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки — характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические , магматические , сейсмические и геохимические процессы.

Основой теоретической геологии начала XX века была контракционная гипотеза . Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей , созданная на основании изучения складчатых сооружений.

Эта теория была сформулирована Дж. Дэна, который добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции Земля состоит из гранитов ( континенты ) и базальтов (океаны). При сжатии Земли в океанах - впадинах возникают тангенциальные силы, которые давят на континенты.

Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Против этой схемы выступил немецкий учёный - метеоролог Альфред Вегенер 6 января 1912 года он выступил на собрании Немецкого геологического общества с докладом о дрейфе материков.

Исходной посылкой к созданию теории стало совпадение очертаний западного побережья Африки и восточного Южной Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного праматерика.

Вегенер не удовлетворился совпадением очертаний побережий (которые неоднократно замечались до него), а стал интенсивно искать доказательства теории.

Для этого он изучил геологию побережьев обоих континентов и нашёл множество схожих геологических комплексов, которые совпадали при совмещении, так же, как и береговая линия.

Другим направлением доказательства теории стали палеоклиматические реконструкции, палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы, по обе стороны Атлантического океана.

 Они очень схожи, но разделены многокилометровым водным пространством, и трудно предположить, что они пересекли океан .

Кроме того, Вегенер стал искать геофизические и геодезические доказательства. Однако, в то время уровень этих наук был явно не достаточен, чтобы зафиксировать современное движение континентов. В 1930 году Вегенер погиб во время экспедиции в Гренландии, но перед смертью уже знал, что научное сообщество не приняло его теорию.

Изначально теория дрейфа материков была принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе , которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог.

В качестве источника движения плит предлагались сила Кориолиса, приливные явления и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения огромных континентальных блоков.

Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты, и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства.

После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды об Атлантиде . Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков.

Так дю Туа ( Alexander du Toit ) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты.

Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что они всё таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к понимаю «машины» под названием Земля.

К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты , которые возвышаются на 1,5—2 км над абиссальными равнинами , покрытыми осадками. Эти данные позволили Р. Дицу и Г. Хессу в 1962 — 1963 годах выдвинуть гипотезу спрединга . Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.

Возраст дна океанов. В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы, как запись инверсий магнитного поля Земли, зафиксированная в намагниченности базальтов дна океана.

После этого тектоника плит начала победное шествие в науках о Земле. Всё больше учёных понимали, что, чем тратить время на защиту концепции фиксизма, лучше взглянуть на планету с точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам. Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далёких квазаров и измерениями с помощью спутниковых навигационных систем GPS . Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.

1.2 Основные понятия

1.2.1 Сила, двигающая плиты.

Сейчас уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных теплогравитационных течений — конвекции . Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на ее поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжелым массам, уже отдавшим часть тепла земной коре. Этот процесс переноса тепла (следствие всплывания легких - горячих масс и погружения тяжелых - более холодных масс) идет непрерывно, в результате чего возникают конвективные потоки. Эти потоки — течения замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном же направлении с огромной силой за счет огромной вязкости мантийного вещества. Если бы мантия была совершенно жидкой - вязкость пластичной мантии под корой была бы малой (скажем, как у воды или около того), то через слой такого вещества с малой вязкостью не могли бы проходить поперечные сейсмические волны.

А земная кора увлекалась бы потоком такого вещества со сравнительно малой силой. Но, благодаря высокому давлению, при относительно низких температурах, господствующих на поверхности Мохо и ниже, вязкость мантийного вещества здесь очень велика (так что в масштабе лет вещество манетии Земли жидкое (текучее), а в масштабе секунд - твердое). Движущей силой течения вязкого мантийного вещества непосредственно под корой является перепад высот свободной поверхности мантии между областью подъема и областью опускания конвекционного потока. Этот перепад высот, можно сказать, величина отклонения от изостазии, образуется из-за разной плотности чуть более горячего (в восходящей части) и чуть более холодного вещества, поскольку вес более и менее горячего столбов в равновесии одинаков (при разной плотности!). На самом же деле, положение свободной поверхности не может быть измерено, оно может быть только вычислено (высота поверхности Мохо + высота столба мантийного вещества, по весу эквивалентного слою более легкой коры над поверхностью Мохо).

Эта же движущая сила (перепада высот) определяет степень упругого горизонтального сжатия коры силой вязкого трения потока о земную кору. Величина этого сжатия мала в области восхождения мантийного потока и увеличивается по мере приближения к месту опускания потока (за счет передачи напряжения сжатия через неподвижную твердую кору по направлению от места подъема к месту спуска потока). Над опускающимся потоком сила сжатия в коре так велика, что время от времени превышается прочность коры (в области наименьшей прочности и наибольшего напряжения), происходит неупругая (пластическая, хрупкая) деформация коры — землетрясение. При этом из места деформации коры выдавливаются целые горные цепи, например, Гималаи (за много шагов).

При пластичекой (хрупкой) деформации очень быстро (в темпе смещения коры при землетрясении) уменьшается и напряжение в ней - сила сжатия в очаге землетрясения и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счет очень медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.

Таким образом, движение плит — следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель.

Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии.

Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана, калия и других радиоактивных элементов, но впоследствии выяснилось, что содержания радиоактивных элементов в породах земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла.

А содержание радиоактивных элементов в подкорковом веществе (по составу близком к базальтам океанического дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжелых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.

Другая модель объясняет нагрев химической дифференциацией Земли . Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию.

Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела.

Это вряд ли — при аккреции тепло выделялось практически на поверхности, откуда оно легко уходило в космос, а не в центральные области Земли.

1.2.2 Дивергентные границы или границы раздвижения плит.

Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Океанические рифты.

Схема строения срединно-океанического хребта

На океанической коре рифты приурочены к центральным частям срединно-океанических хребтов. В них происходит образование новой океанической коры. Общая их протяжённость более 60 тысяч километров. К ним приурочено множество гидротермальных источников , которые выносят в океан значительную часть глубинного тепла, и растворённых элементов. Высокотемпературные источники называются чёрными курильщиками , с ними связаны значительные запасы цветных металлов.

Континентальные рифты.

Раскол континента на части начинается с образования рифта. Кора утончается и раздвигается, начинается магматизм. Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов . После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами , превращаясь в авлакоген , либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

1.2.3 Конвергентные границы

Конвергентными называются границы на которых происходит столкновение плит. Возможно три варианта:

Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная и погружается под континент в зоне субдукции .

Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга.

Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример — Гималаи .

В редких случаях происходит надвигание океанической коры на континентальную — обдукция. Благодаря этому процессу возникли офиолиты Кипра, Новой Каледонии, Омана и другие.

В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в СОХах. В них происходят исключительно сложные процессы, взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений , один из популярнейших объектов современных геологических исследований.

Большинство современных зон субдукции расположены по периферии Тихого океана, образуя тихоокеанское огненное кольцо . Процессы, идущие в зоне конвегенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происходения, образуя новую континентальную кору.

Активные континентальные окраины

Активная континентальная окраина возникает  там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки, её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующая при этом структура называется аккреционным клином. Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

Островные дуги

Островные дуги — это цепочки вулканических остров над зоной субдукции, возникающие там, где океаническая плита погружается под океаническую. В качестве типичных современных островных дуг можно назвать Алеутские, Курильские, Марианские острова, и многие другие архипелаги. Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом.

Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный желоб и преддуговый прогиб.

За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море, Южно-Китайское море и т.д.) в котором также может происходить спрединг.

Коллизия континентов

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, напр., Ангаро-Витимский и Зерендинский .

1.2.4 Трансформные границы

Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы — грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

Трансформные разломы

В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома.

На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры — надвиги, складки и грабены. В результате, в зоне разлома нередко обнажаются мантийные породы.

По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией.

Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока, возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

Сдвиги на континентах

Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас, отделяющий Северо-Американскую плиту от Тихоокеанской . 800-мильный разлом Сан-Андреас — один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

1.2.5 Внутриплитные процессы

Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории.

Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

Горячие точки

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет. Он поднимается над поверхностью океана в виде Гавайских островов, от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, напр., атолл Мидуэй, выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север, и называется уже Императорским хребтом. Он прерывается в глубоководном желобе перед Алеутской островной дугой.

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка — место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом. В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядро — мантия.

Траппы и океанические плато

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы, а в океанах океанические плато. Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км?) и изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе, траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличие от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники, которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.

ГЛАВА 2. Тектоника плит как система наук.

2.1 Карта тектонических плит

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода, движения плит можно описать геометрическими законами перемещения фигур на сфере.

Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты.

Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени.

Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину , в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье — Стокса. Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли — нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход. Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход. В смысле истории планеты Земля, тектоника плит — это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков — террейнов. При изучении Скалистых гор зародилось особое направление геологических исследований — террейновый анализ, который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

теория тектоники плит принесла новое представление о внешней оболочке Земли как о системе жестких структур, движущихся друг относительно друга. Но она не затрагивает процессов в глубоких недрах Земли и практически игнорирует роль чисто вертикальных движений в эволюции земной поверхности. Не дает она ответа и на ряд принципиальных вопросов, например, почему после своего формирова ния суперконтинент раскалывается на части, которые, вращаясь, расходятся в разные стороны?

К началу 90-х годов стало ясно, что нужна новая теория, обобщающая тектонику плит и дающая объяснение как новым данным о внутреннем строении Земли, так и процессам, происходящим в ее недрах.

Тектоника плюмов.

На протяжении двух десятилетий в геофизике широко обсуждается вопрос: охватывает ли конвекция всю мантию или мантийный материал циркулирует в верхнем и нижнем ее слоях раздельно, никогда не смешиваясь? Большинство исследователей считают, что мантия толщиной около 2900 км разделена на два слоя границей на глубине 660 км, где мантийный материал подвергается фазовым изменениям. Но в то же время они спорят, служит ли эта граница барьером для общемантийной конвекции. Геохимики полагают, что верхняя и нижняя части мантии отличаются по своему химическому составу. Если это так, то обе части должны иметь изолированные конвективные ячейки, и материал погружающейся литосферной плиты остается в верхней мантии. С другой стороны, ряд геофизиков, в основном сейсмологов, считают, что конвекция пронизывает всю мантию. Их уверенность основана на сейсмических данных, показывающих что литосферная плита погружается в глубь мантии, достигая границы ядра.

Карта мантийных плюмов и горячих точек.

Глобальные сейсмические исследования начинаются с изучения времен прихода упругих сейсмических волн, которые распространяются от очага землетрясений и пронизывают всю Землю по различным направлениям. Зная время прихода волны и путь, пройденный ею, сейсмологи определяют скорость волны в каждой "точке" мантии (под "точкой" понимается трехмерный блок со сторонами 100-200 км). Этот метод, известный как глобальная сейсмическая томография, похож на компьютерную томографию, используемую в медицине, где рентгеновские лучи, просвечивающие, скажем, голову человека, рисуют картину его мозга.

Японский геофизик Ш. Маруяма в 1994 г. предложил теоретическое объяснение сейсмическим наблюдениям, назвав свою гипотезу тектоникой плюмов (от английского plume - перо, на которое по форме похож мантийный материал). Он считает, что литосферные плиты, погружаясь в глубь Земли, застревают на границе между верхней и нижней мантией. Холодный материал плит копится здесь сотни миллионов лет, пока не прорвет границу. Погружаясь до границы ядра, он охлаждает железо-никелевый расплав, который опускается во внешнее жидкое ядро Земли. Вытесненный им наверх горячий суперплюм вызывает континентальный раскол и дрейф вновь образовавшихся континентов.                                    После этого тектоника плит становится независимой от тектоники плюмов еще на несколько сот миллионов лет, когда процесс повторится. Маруяма считает, что холодные плюмы образуются в нижней мантии достаточно случайно, на ранней стадии континентального дрейфа после раскола суперконтинента. А холодный суперплюм может развиваться под формирующимся суперконтинентом, вроде Лавразии, существовавшей 200 миллионов лет назад.

 Тектоника плит описывает процессы, происходящие на глубинах до 1/10 радиуса Земли, в то время как тектоника плюмов охватывает всю мантию, объясняя ее конвекцию, возникновение и раскол континентов, конвективные течения во внешнем ядре. Тектоника плит, таким образом, становится частью тектоники плюмов.

Однако и эта новая теория (скорее, гипотеза), нарисовав интересную картину возможного развития процессов внутри мантии, не дала ответов на вопросы о том, как суперплюмы реально согласуются с горизонтальными движениями континентов или почему суперконтинент, образовавшийся над нисходящим потоком, раскалывается. Основной недостаток и тектоники плит, приводимых в движение мантийной конвекцией, и тектоники плюмов, ответственных за движения в мантии, заключается в том, что обе теории не принимали во внимание влияние движущихся континентов на мантийные процессы. А роль их в динамике Земли неожиданно оказалась очень большой роль континентов в динамике Земли, долгое время было распространено мнение, что движение плит определяется главным образом тепловой конвекцией в мантии. При этом считалось, что континенты пассивно дрейфуют под действием вязких течений и их обратное влияние на конвекцию мантии не существенно. Однако, как впервые установлено американским геофизиком М. Гурнисом, континенты могут существенно влиять на структуру мантийной конвекции. Проведенный им численный эксперимент показал, что континенты соединяются в местах нисходящего потока вещества. Мощная континентальная плита перекрывает поток тепла из мантии, ее температура растет, под плитой возникает восходящий поток, и континенты расходятся в разные стороны. Эта модель, будучи двумерной, не могла показать всей сложной картины движения континентов.

И тогда российские ученые В. Трубицын  и В. Рыков  предприняли попытку создать трехмерные численные модели мантийной конвекции с плавающими континентами. Эта попытка оказалась успешной. В качестве модели Земли была принята коробка с вязкой жидкостью, нагреваемая снизу и изнутри. В такой коробке при достаточном перепаде температуры между дном и поверхностью возникает тепловая конвекция, при которой горячее вещество устремляется вверх, а холодное погружается на дно. Возникают так называемые ячейки Бенара. На поверхность коробки накладывались контуры континенов. Математически задача сводилась к совместному решению уравнений сохранения импульса, энергии и массы, а также уравнений движения твердого тела, описывающих движение континентов. Моделирование показало, что континенты устремляют ся в направлении нисходящего потока, стягиваясь друг к другу. Собранные вместе над нисходящим потоком вещества континенты начинают играть роль крышки, не выпускающей тепло на поверхность. Первоначально холодное, нисходящее вещество начинает нагреваться, становится легче и приблизительно через 100-200 миллионов лет на этом месте образуется восходящий мантийный поток, который и приводит к расколу "суперконтинента". Таким образом, континенты меняют существующую систему конвективных движений и оказывают влияние на потоки вещества вплоть до самого ядра. Образовавшиеся "осколки" расходятся в стороны, чтобы вновь собраться через сотни миллионов лет над другим нисходящим потоком. Хотя модель не учитывала сферичности Земли, что существенно при моделировании континентального дрейфа, она выявила много примеров, наблюдаемых в природе. Так, на на одном из рисунков можно разглядеть прообраз Тихого океана с огромным грибом восходящего мантийного вещества, очень похожим на обнаруженный с помощью глобальной сейсмической томографии.

Численные эксперименты, без которых сегодня практически невозможно описать течение сложных внутримантийных процессов, продемонстрировали весь цикл дрейфа континентов от их сближения и объединения в единый "суперконтинент" до его распада и расхождения континентов. И всему виной оказались сами континенты: именно они перестроили структуру мантийных течений. Так с помощью численного моделирования удалось понять механизм формирования наблюдаемых структур земной поверхности.

Заключение

Земная твердь под нашими ногами непрерывно плывет. Факт: поверхность океанов постоянно разрастается. Наконец-то открыта тайна горообразования. Не только предсказывать, но и влиять на землетрясения. Столкновение мнений — тернистая дорога к истине. Может быть, никогда еще противоположные точки зрения не сталкивались столь яростно и драматично, как это произошло в нашем столетии в области осмысливания судеб планеты Земля. Спорили фиксисты и мобилисты — сторонники противоположных мнений: навечно ли закреплены за континентами места их расположения в Мировом океане, или земная твердь, пусть крайне медленно, но перемещается в пространстве?

В начале нашего века малоизвестный в то время немецкий метеоролог Альфред Вегенер высказал гипотезу о возможном перемещении континентов земного шара. Противники смелой гипотезы дружно обрушились на молодого геолога, задавили его и более чем на полвека заставили забыть его смелые идеи.

И вдруг в середине семидесятых годов, когда Вегенера уже не было в живых, его идеи вновь получили подтверждения свежими фактами. Вновь завязалась ожесточенная дискуссия, на протяжении которой фиксистам пришлось во многом потесниться. Но они еще не сдавались окончательно. Вот, что говорил в это время один из идеологов незыблемости континентов, известнейший отечественный ученый с мировым именем академик В. Белоусов: «Гипотеза эта, безусловно, интересна, но, по всей вероятности, не является истиной в последней инстанции и, естественно, требует серьезной проверки». Прошло еще двадцать лет... В конце века теория «новой глобальной тектоники» получила всемирную оценку — она поддерживается большинством ученых. Можно признать: мобилисты победили — мы продолжаем плыть на подвижных плитах материков. Сегодня мы излагаем основы этой теории, опирающейся на новые научные факты последних десятилетий.

Список используемых источников

1.  Максимов Н. Ледоколы земной геологии.

2. Трубицын В, Рыков В. Мантийная конвекция и глобальная тектоника Земли.

3. Орленок В. Основы геофизики.

4. Банин Л. П., Проблемы глобальной тектоники. // 2003, -№15.

5. Хаин В.Е. Тектоника литосферных плит, Уголок Географа //2004,-  № 19.

1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Чтобы повысить пенсионный возраст на три года, сначала надо поднять продолжительность жизни хотя бы на пять.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, контрольная по экологии, охране природы "Тектоника плит", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru