Курсовая: Функциональная электроника и микроэлектроника - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Функциональная электроника и микроэлектроника

Банк рефератов / Технологии

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 165 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной курсовой работы
Текст
Факты использования курсовой

Узнайте стоимость написания уникальной работы

Введение
Интегральная электроника на сегодняшний день является одной из наиболее бурно развивающихся отраслей современной промышленности. Значимой составной частью данной науки является схемотехническая микроэлектроника. На каждом новом этапе развития технологии производства интегральных микросхем (ИМС) создаются принципиально новые методы изготовления структур ИМС, отражающие последние достижения науки.
В настоящее время наибольшее внимание в микроэлектронике уделяется созданию СБИС — сверхбольших интегральных схем — интегральных структур с очень большой степенью интеграции элементов, что позволяет не только значительно уменьшить площадь подложки ИМС, а следовательно, габаритные размеры и потребляемую мощность, но также и значительно расширить перечень функций, которые данная СБИС способна выполнять.
В частности, использование СБИС в вычислительной технике позволило создание высокопроизводительных микропроцессоров электронно-вычислительных машин, а также встраиваемых однокристальных микроконтроллеров, объединяющих на одном кристалле несколько взаимосвязанных узлов вычислительного комплекса.
Переход к использованию СБИС сопряжен со значительным увеличением числа элементов ИМС на одной подложке, а также с существенным уменьшением геометрических размеров элементов ИМС. В настоящее время технология позволяет изготовление отдельных элементов ИМС с геометрическими размерами порядка 0,15 – 0,18 мкм.
Быстрое развитие микроэлектроники как одной из самых обширных областей промышленности обусловлено следующими факторами:
  1. Надежность — комплексное свойство, которое в зависимости от назначения изделия и условий его эксплуатации может включать безотказность, долговечность, ремонтопригодность и сохраняемость в отдельности или определенное сочетание этих свойств как изделий в целом, так и его частей. Надежность работы ИМС обусловлена монолитностью их структуры, а также защищенностью интегральных структур от внешних воздействий с помощью герметичных корпусов, в которых, как правило, выпускаются серийные ИМС.
  2. Снижение габаритов и массы. Значительное уменьшение массы и размеров конкретных радиоэлектронных приборов без потери качества работы также является одним из решающих факторов при выборе ИМС при разработке различных приборов и узлов радиоэлектронной аппаратуры.
Описание схемы для разработки
Данная схема представляет собой цифровую схему логики 4ИЛИ-НЕ на биполярных транзисторах. Питание схемы стандартное, 5В. Схема состоит из четырех идентичных каскадов, состоящих из биполярного транзистора, резистора и конденсатора.
Логика данного логического элемента — насыщенного типа, т. е. транзисторы в каскадах при работе схемы работают либо в режиме отсечки (на входе — "0", на выходе — "1", транзистор закрыт) либо в режиме насыщения (на входе — "1", на выходе — "0", транзистор открыт).
Назначение пассивных элементов в цепи базы транзисторов следующее:
1.               Резистор — предназначен для выравнивания входных характеристик всех каскадов логического элемента. Включение резистора в цепь базы необходимо ввиду большой погрешности параметров, в частности, сопротивления базы при изготовлении интегральной структуры транзистора, что является неприемлемым, так как не обеспечивает требуемой стабильности и воспроизводимости параметров схемы.
2.               Конденсатор — применяется для увеличения быстродействия каскада. Это достигается благодаря свойству конденсатора проводить сигналы высших гармоник. При подаче на вход схемы уровня логической единицы в момент перехода из ноля в единицу входной сигнал содержит много гармоник высших порядков, которые беспрепятственно проходят через конденсатор, открывая транзистор. При установлении на входе стабильного напряжения гармоники высших порядков пропадают, и транзистор стабильно работает в режиме насыщения.
Ввиду наличия в схеме транзисторов, резисторов и конденсаторов, данный тип логики получил название резисторно-емкостной транзисторной логики (РЕТЛ).
Ввиду того, что все четыре каскада рассматриваемой схемы являются абсолютно идентичными, работа остальных каскадов не рассматривается.
 
Определение электрических параметров элементов схемы
Значения токов и напряжений на элементах схемы определяется с помощью программы Electronics Workbench (версия 5.12, разработчик — Interactive Image Technologies LTD).
Для последующего расчета топологических параметров разрабатываемой интегральной схемы необходимо определить следующие параметры:
  • максимальный ток через резисторы IR. Данный параметр необходим для расчета мощности, выделяющейся на резисторах, необходимой для последующих расчетов;
  • для транзисторов — максимальный ток на коллекторном переходе, максимальный ток эмиттера, максимальное напряжение на переходе коллектор-база UКБ.
Электрические параметры конденсаторов, необходимые для расчета их топологических параметров, приведены в задании к данной работе и не подлежат определению.
Примечание. Данные значения токов и напряжений были измерены при подаче на логические входы схемы минимально допустимого напряжения логической единицы (1,9 В), и/или максимально допустимого напряжения логического нуля (0,7 В).
 
Технологические этапы изготовления ИМС
При производстве различных ИМС в текущий момент используется планарная технология, обеспечивающая воспроизводимые параметры интегральных элементов и групповые методы их производства Локальные технологические обработки участков монокристалла кремния обеспечиваются благодаря применению свободных и контактных масок. В планарной технологии многократно повторяются однотипные операции для создания различных по структуре ИМС.
Основными технологическими операциями при изготовлении ИМС являются:
  • подготовка полупроводниковой подложки;
  • окисление;
  • фотолитография;
  • диффузия;
  • эпитаксия;
  • ионное легирование;
  • металлизация.
Элементы биполярных интегральных структур создаются в едином технологическом цикле на общей полупроводниковой подложке. Каждый элемент схемы формируется в отдельной изолированной области, а соединения между элементами выполняются путем металлизации на поверхности пассивированной схемы. Изоляция между элементами схемы осуществляется двумя способами: обратносмещенными р – n переходами и диэлектриком.
Изоляция обратно смещенным переходом реализуется следующими технологическими методами: разделительной, коллекторной изолирующей диффузией; базовой изолирующей диффузией; методом трех фотошаблонов, изоляцией n-полостью.
Для изоляции элементов ИМС диэлектриком используют слой SiO2, и Si3Н4, ситалл, стекло, керамику, воздушный зазор.
 
Последовательность операций планарно-эпитаксиальной технологии производства ИМС
Механическая обработка поверхности рабочей стороны кремниевой пластины р-типа до 14-го класса чистоты и травление в парах НСl для удаления нарушенного слоя
Подложки кремния шлифуют до заданной толщины, затем полируют (обычно до 14 класса точности), подвергают травлению и промывают. Эпитаксиальные структуры не требуют дополнительной механической обработки, а лишь подвергаются травлению и промывке перед процессами создания схем.
Окисление для создания защитной маски при диффузии примеси n-типа
На поверхности кремния выращивается плотная пленка двуокиси кремния, которая имеет близкий к кремнию коэффициент теплового расширения, что позволяет использовать ее как надежное защитное покрытие, а также изолятор отдельных компонентов ИМС, маску при проведении локальной диффузии и как активную часть прибора в МДП- структурах
Термическое окисление поверхностей кремния является наиболее технологичным методом получения пленок SiO2. В этом случае в качестве окисляющей среды используются сухой или увлажненный кислород либо пары воды.
При окислении температура рабочей зоны поддерживается на уровне 1100 – 1300 °С. Окисление проводится методом открытой трубы в потоке окислителя. В сухом кислороде выращивается наиболее совершенный по структуре окисный слой, но процесс окисления при этом проходит медленно (Т = 1200 °С, толщина d слоя SiO2 составляет 0,1 мкм).
На практике окисление проводят в три стадии: в сухом кислороде, влажном кислороде и снова в сухом. Для стабилизации свойств защитных окисных слоев в процессе окисления в среду влажного кислорода или паров воды добавляют борную кислоту, двуокись титана и др.
Фотолитография для вскрытия окон в окисле и проведения локальной диффузии в местах формирования скрытых слоев
Создание на поверхности подложки защитной маски малых размеров, используемой в дальнейшем для проведения локальных процессов травления, диффузии, эпитаксии и др., образуется с помощью фоточувствительного слоя (фоторезиста), который под действием света изменяет свою структуру. По способности изменять свойства при облучении фоторезисты делятся на негативные и позитивные.
Освещение негативного фоторезиста вызывает дополнительную полимеризацию его молекул, вследствие чего после проявления пластины полупроводника на ней остаются нерастворимые участки рисунка, которые представляют собой негативное изображение фотошаблона, а неосвещенные участки фоторезиста смываются в растворителе при проявлении.
В позитивном фоторезисте под действием света происходит разрушение молекул. При проявлении такой фоторезист удаляется с освещенных участков, а на поверхности пластины остается позитивное изображение фотошаблона.
Фоторезист должен быть чувствительным к облучению, иметь высокую разрешающую способность и кислотостойкость.
Для создания определенного рисунка с помощью фоторезиста используется фотошаблон, представляющий собой пластину из оптического стекла, на поверхности которой содержится рисунок, соответствующий по размерам будущей микросхеме. Фотошаблон может содержать до 2000 изображений одной микросхемы.
Последовательность фотолитографического процесса состоит в следующем.
На окисленную поверхность кремния с толщиной окисла 3000 – 6000 А наносят слой фоторезиста с помощью центрифуги. Фоторезист сушат сначала при комнатной температуре, затем при температуре 100 – 150 0С.
Подложку совмещают с фотошаблоном и облучают ультрафиолетовым излучением. Засвеченный фоторезист проявляют, а затем промывают в деионизированной воде. Оставшийся фоторезист задубливают при комнатной температуре и температуре 200 °С в течение одного часа, после чего окисленная поверхность кремния открывается в местах, соответствующих рисунку фотошаблона. Открытые участки окисла травят в специальных буферных травителях (например, 10 мл НF и 100 мл NH4F в воде). На участки окисла, покрытые фоторезистом, травитель не действует. После травления фоторезист растворяют органическим растворителем и горячей серной кислотой. Поверхность пластины тщательно промывают. На поверхности кремния остается слой SiO2, соответствующий рисунку схемы.
 
Диффузия для создания скрытого n-слоя
Локальная диффузия является одной из основных технологических операций при создании полупроводниковых ИМС.
Диффузия в полупроводниковых кристаллах представляет собой направленное перемещение примесных атомов в сторону убывания их концентрации. В качестве легирующих примесей в кремнии используются в основном бор и фосфор, причем бор создает примеси акцепторного типа, а фосфор донорного. Для бора и фосфора энергия активации соответственно равна 3,7 и 4,4 эВ.
Различают два режима диффузии: диффузия из неограниченного источника и диффузия из ограниченного источника. В производстве ИМС реализуются оба случая диффузии.
Диффузия из неограниченного источника представляет собой первый этап диффузии, в результате которого в полупроводник вводится определенное количество примеси. Этот процесс называют загонкой примеси.
Для создания заданного распределения примесей в глубине и на поверхности полупроводника проводится второй этап диффузии из ограниченного источника. Этот процесс называется разгонкой примеси.
Локальную диффузию проводят в открытые участки кремния по методу открытой трубы в потоке газа-носителя. Температурный интервал диффузии для кремния составляет 950 – 1300 °С. Кремниевые пластины размещают в высокотемпературной зоне диффузионной печи. Газ-носитель в кварцевой трубе при своем движении вытесняет воздух. Источники примеси, размещенные в низкотемпературной зоне, при испарении попадают в газ-носитель и в его составе проходят над поверхностью кремния.
Источники примеси, применяемые в производстве ИМС, могут быть твердыми, жидкими и газообразными. В качестве жидких источников используются: хлорокись фосфора РОСlз и ВВrз.
После установления температурного режима в рабочую зону печи поступает кислород, что способствует образованию на поверхности кремния фосфоро- и боросиликатного стекла. В дальнейшем диффузия проходит из слоя жидкого стекла. Одновременно слой стекла защищает поверхность кремния от испарения и попадания посторонних частиц. Таким образом, в локальных участках кремния происходит диффузия легирующей примеси, и создаются области полупроводника с определенным типом проводимости.
После первой фотолитографии проводится локальная диффузия донорной примеси с малым коэффициентом диффузии (Аs, Sb) и формируется скрытый высоколегированный слой n+ глубиной около 2 мкм.
Примесь с малым коэффициентом диффузии необходимо использовать, чтобы свести к минимуму изменение границ скрытого слоя при последующих высокотемпературных технологических операциях. После этого с поверхности полностью удаляется слой окисла и пластина очищается. На очищенной поверхности кремния выращивается эпитаксиальный слой n-типа толщиной 10 – 15 мкм с удельным сопротивлением 0,1 – 10 Ом*см.
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Во время разгона гей-парада у ОМОНа украли 17 резиновых дубинок.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru