Курсовая: Автокорреляционная функция. Примеры расчётов - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Автокорреляционная функция. Примеры расчётов

Банк рефератов / Экономико-математическое моделирование

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Архив Zip, 27 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

3

Курсовая работа

ТЕМА:

"Автокорреляционная функция. Примеры расчётов"

Введение

Периодическая зависимость играть роль общего типа компонентов временного ряда. Не сложно заметить, что каждое наблюдение очень похоже на пограничное; к тому же имеется повторяющаяся периодическая составляющая, что означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад.

В общей сложности, периодическая зависимость может быть формально определена как корреляционная зависимость порядка n между каждым i-м элементом ряда и (i-n) - м элементом. Ее можно измерять с помощью автокорреляции (т.е. корреляции между самими членами ряда); n обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если оплошность измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые n временных единиц.

Периодические составляющие временного ряда могут быть отысканы с помощью коррелограммы. Коррелограмма (автокоррелограмма) представляет численно и графически автокорреляционную функцию. Другими словами, коэффициенты автокорреляции для последовательности шагов из определенного диапазона. На коррелограмме просто отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные автокорреляции [6, 207].

При изучении коррелограмм следует знать следующее: автокорреляции последовательных лагов формально зависимы между собой.

Рассмотрим пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

Цель работы:

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

1. Теоретические сведения

1.1 Коэффициент автокорреляции и его оценка

Для совершенной характеристики случайного движения недостаточно его математического ожидания и дисперсии. Вероятность того, что на определенном месте возникнут те или иные конкретные значения зависит от того, какие роли случайная величина получила раньше или будет получать позже.

Другими словами, существует поле рассеяния пар значений x(t), x (t+n) временного ряда, где n - постоянный интервал или задержка, которая характеризует зависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации -

g (n) = E[(x(t) - m) (x (t + n) - m)] -

и автокорреляции

r (n) = E[(x(t) - m) (x (t + n) - m)] / D,

где m и D - математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p (x(t1), x(t2)).

r (n) = g (n) /g (0),

откуда вытекает, что r (0) = 1. В тех же условиях стационарности множитель корреляции r (n) между двумя значениями временного ряда зависит лишь от величины временного интервала n и не зависит от самих моментов наблюдений t. Коэффициент автокорреляции может быть оценен и для нестационарного ряда, но в этом случае его вероятностная интерпретация теряется.

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (n) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой n

Главным из различных коэффициентов автокорреляции является первый - r1, измеряющий тесноту связи между уровнями x(1), x(2),…, x (n -1) и x(2), x(3),…, x(n).

Распределение коэффициентов автокорреляции неизвестно, поэтому для оценки их правдивости иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику [4, 112]

t = r1 (n -1)0.5,

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

1.2 Автокорреляционные функции

Последовательность коэффициентов корреляции rn, где n = 1, 2,…, n, как функция интервала n между наблюдениями называется автокорреляционной функцией.

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rn для «белого шума», при n >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом n. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

Рис. 1.

Рис. 2.

Рис. 3.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:

· в детерминированных или стохастических моделях динамики не учтен существенный фактор фактически, нарушен принцип омнипотентности

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

Рис. 4.

1.3 Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2) - e(1))2 +… + (e(n) - e (n -1))2]/[e(1)2 +… + e(n)2],

где e(t) - остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 - r1), где r - выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики - 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие - отрицательной [2, 193].

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда - d = 1.638 - свидетельствует о некоторой автокоррелированности остатков.

2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Все данные взяты с сайта http://e3.prime-tass.ru/macro/

Пример 1. ВВП РФ

Приведем данные о ВВП РФ


Год

квартал

ВВП

первая разность


2001

I

1900,9




II

2105,0

204,1



III

2487,9

382,9



IV

2449,8

-38,1


2002

I

2259,5

-190,3



II

2525,7

266,2



III

3009,2

483,5



IV

3023,1

13,9


2003

I

2850,7

-172,4



II

3107,8

257,1



III

3629,8

522,0



IV

3655,0

25,2


2004

I

3516,8

-138,2



II

3969,8

453,0



III

4615,2

645,4



IV

4946,4

331,2


2005

I

4479,2

-467,2



II

5172,9

693,7



III

5871,7

698,8



IV

6096,2

224,5


2006

I

5661,8

-434,4



II

6325,8

664,0



III

7248,1

922,3



IV

7545,4

297,3


2007

I

6566,2

-979,2



II

7647,5

1081,3









Исследуем ряд

На диаграммах показаны: исходный ряд (сверху) и автокорреляционная функция до лага 9 (снизу). На нижней диаграмме штриховой линией обозначен уровень «белого шума» - граница статистической значимости коэффициентов корреляции. Видно, что имеется сильная корреляция 1 и 2 порядка, соседних членов ряда, но и удаленных на 1 единицу времени друг от друга. Корреляционные коэффициенты значительно превышают уровень «белого шума». По графику автокорреляции видим наличие четкого тренда.

Ниже даны значения автокорреляционной функции и уровня белого шума



АКФ(…)

Ошибка АКФ


1

0,856

0,203

-0,203


2

0,762

0,616

-0,616


3

0,658

0,747

-0,747


4

0,550

0,831

-0,831


5

0,418

0,885

-0,885


6

0,315

0,915

-0,915


7

0,224

0,932

-0,932


8

0,131

0,940

-0,940







Если нас интересует внутренняя динамика ряда необходимо найти первую разность его членов, т.е. для каждого квартала найти изменение значения по сравнению с предыдущим кварталом. Для первой разности построим автокорреляционную функцию.


Статистика Дарбина-Ватсона (DW) =1,813


DW Up= 1,450


DW Low=1,290






Статистика Дарбина-Уотсона показывает, что автокорреляции 1-го порядка нет. По графику можно видеть, что первые разности возрастают, т. к. тренд восходящий. Видна автокорреляция 2 и 4-го порядков, что говорит о полугодовой и годовой сезонности. Значения функции и границы для «белого шума» представлены ниже



АКФ(…)

Ошибка АКФ


1

-0,203

0,392

-0,392


2

-0,530

0,416

-0,416


3

-0,003

0,513

-0,513


4

0,637

0,513

-0,513


5

-0,087

0,627

-0,627


6

-0,423

0,629

-0,629


7

-0,028

0,673

-0,673







Пример 2. Импорт

Дано


год

квартал

номер

значение

разность


1999

I

1

3,10




II

2

3,40

0,30



III

3

3,33

-0,07



IV

4

3,80

0,47


2000

I

5

3,20

-0,60



II

6

3,60

0,40



III

7

3,70

0,10



IV

8

4,33

0,63


2001

I

9

3,60

-0,73



II

10

4,43

0,83



III

11

4,30

-0,13



IV

12

5,17

0,87


2002

I

13

4,13

-1,03



II

14

4,77

0,63



III

15

5,20

0,43



IV

16

5,97

0,77


2003

I

17

5,10

-0,87



II

18

5,90

0,80



III

19

6,33

0,43



IV

20

7,23

0,90


2004

I

21

6,43

-0,80



II

22

7,70

1,27



III

23

8,17

0,47



IV

24

9,08

0,92


2005

I

25

8,17

-0,92



II

26

9,80

1,63



III

27

10,50

0,70



IV

28

12,47

1,97


2006

I

29

10,40

-2,07



II

30

12,67

2,27



III

31

14,20

1,53



IV

32

17,10

2,90








Построим автокорреляционную функцию



АКФ(…)

Ошибка АКФ


1

0,802

0,211

-0,211


2

0,693

0,535

-0,535


3

0,585

0,637

-0,637


4

0,566

0,701

-0,701


5

0,423

0,756

-0,756


6

0,343

0,785

-0,785


7

0,255

0,803

-0,803


8

0,231

0,813

-0,813


9

0,131

0,822

-0,822


10

0,072

0,824

-0,824









Видим, что есть автокорреляция 1-го и 2-го порядков. График показывает наличие тренда. Положительная автокорреляция объясняется неправильно выбранной спецификацией, т. к. линейный тренд тут непригоден, он скорее экспоненциальный. Поэтому сделаем ряд стационарным, взяв первую разность.



АКФ(…)

Ошибка АКФ


1

-0,297

0,343

-0,343


2

0,309

0,390

-0,390


3

-0,420

0,420

-0,420


4

0,636

0,471

-0,471


5

-0,226

0,571

-0,571


6

0,214

0,583

-0,583


7

-0,311

0,593

-0,593


8

0,444

0,613

-0,613


9

-0,229

0,653

-0,653









Видим наличие автокорреляции 4-го порядка, что соответствует корреляции данных, отдаленных на год. Автокорреляцию первого порядка не имеем.


Статистика Дарбина-Ватсона (DW) =2,023


DW Up=1,500


DW Low=1,360




Пример 3. Экспорт

Приведем данные


год

квартал

номер

значение

разность


2000

I

1

22,30




II

2

22,80

0,50



III

3

24,80

2,00



IV

4

24,80

0,00


2001

I

5

25,50

0,70



II

6

25,50

0,00



III

7

25,90

0,40



IV

8

26,20

0,30


2002

I

9

26,30

0,10



II

10

28,60

2,30



III

11

28,70

0,10



IV

12

30,30

1,60


2003

I

13

30,50

0,20



II

14

31,00

0,50



III

15

33,80

2,80



IV

16

36,40

2,60


2004

I

17

38,00

1,60



II

18

41,40

3,40



III

19

47,20

5,80



IV

20

52,36

5,16


2005

I

21

52,50

0,14



II

22

60,40

7,90



III

23

65,70

5,30



IV

24

67,40

1,70


2006

I

25

69,00

1,60



II

26

76,60

7,60



III

27

79,80

3,20



IV

28

71,00

-8,80


2007

I

29

80,50

9,50


























Для исходного ряда имеем:



АКФ(…)

Ошибка АКФ


1

0,896

0,165

-0,165


2

0,822

0,600

-0,600


3

0,712

0,739

-0,739


4

0,592

0,828

-0,828


5

0,483

0,884

-0,884


6

0,372

0,920

-0,920


7

0,261

0,941

-0,941


8

0,150

0,950

-0,950


9

0,062

0,954

-0,954







Очевидно наличие четкого тренда, значимыми являются коэффициенты автокорреляции 1-го и 2-го порядков. Для первой разности



АКФ(…)

Ошибка АКФ


1

-0,173

0,372

-0,372


2

-0,090

0,389

-0,389


3

0,353

0,392

-0,392


4

0,240

0,435

-0,435


5

-0,106

0,454

-0,454


6

-0,088

0,457

-0,457


7

0,315

0,460

-0,460


8

-0,136

0,490

-0,490







Автокорреляции уже не видим, остатки распределены как «белый шум».

Заключение

Еще одна полезная технология исследования периодичности состоит в обследовании частной автокорреляционной функции (ЧАКФ), которая представляет собой углубление взгляда обычной автокорреляционной функции.

В частной автокорреляционной функции ликвидируется зависимость между промежуточными наблюдениями. Иными словами, частная автокорреляция на данном лаге похожа на обычную автокорреляцию, исключая то, что при вычислении из нее убирается влияние автокорреляций с меньшими лагами. На лаге 1 (когда нет промежуточных элементов внутри лага), частная автокорреляция равна обычной автокорреляции. Частная автокорреляция дает более «чистую» картину периодических зависимостей.

Как было отмечено ранее, периодическая составляющая для данного лага n может быть удалена взятием разности соответствующего порядка. Это обозначает, что из каждого i-го элемента ряда вычитается (i-n) - й элемент. В пользу таких преобразований имеются доводы. Во-первых, таким образом можно определить скрытые периодические составляющие ряда. Напомним, что автокорреляции на последовательных лагах зависимы. Поэтому удаление некоторых автокорреляций изменит другие автокорреляции, которые, возможно, подавляли их, и сделает некоторые другие сезонные составляющие более заметными. Во-вторых, удаление периодических составляющих делает ряд стационарным, что необходимо для применения некоторых методов анализа.

Литература

1. В.Е. Гмурман «Теория вероятностей и математическая статистика». Москва: Высшая школа, 1979 г.

2. В.Е Гмурман. «Руководство к решению задач по теории вероятностей и математической статистике». Москва: Высшая школа, 1997 г.

3. В.Н. Калинина, В.Ф. Панкин. «Математическая статистика». Москва: Высшая школа, 1994 г.

4. И.П. Мацкевич, Г.П. Свирид, Г.М. Булдык. «Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика)». Высшая школа, 1998 г.

5. Л.К. Тимофеева, Е.И. Суханова, Г.Г. Сафиуллин. «Сборник задач по теории вероятностей и математической статистике».

6. Тимофеева Л.К., Суханова Е.И. «Математика для экономистов». Сборник задач по теории вероятностей и математической статистике. - М.: У «Учебная литература», 1999 г.





1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
- Я потратила на тебя свои лучшие годы.
- Я тоже на тебя сильно потратился.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по экономико-математическому моделированию "Автокорреляционная функция. Примеры расчётов", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru