Реферат: Эволюция теоретических проблем химии - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Эволюция теоретических проблем химии

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 21 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Вещества и их взаимные превращения являются предметом изучения химии. Химия – это наука о веществах и законах, которым подчиняются их превращения. Слово «химия» получило широкое распространение с начала XVIII века. На многих языках оно имеет сходное звучание: chemistry ('кемистри) – на английском, сhemie (хе'ми) – на немецком. Корни «хем» или «хим» содержатся в соответствующих терминах и на многих других языках. Однако до сих пор не удалось установить, когда возникло слово «химия» и какой смысл в него первоначально вкладывался. Многие исследователи склоняются к тому, что это слово происходит от «Кеми» – «Черная страна». Так в древней Греции называли Египет, где зародилось «священное искусство химии». Это же слово относилось к цвету почвы в долине Нила. Смысл такого названия – «египетская наука». Однако в древнегреческом языке были другие близкие по звучанию слова. «Химос» или «хюмос» означало «сок»; это понятие встречается в рукописях, содержащих сведения по медицине и способам приготовления лекарств. «Хима» или «хюма» переводится как литье и относится к искусству выплавки металлов. «Хемевсис» означает «смешивание», являющееся важнейшей операцией большинства химических процессов. Термин «химия» в смысле «настаивание», «наливание» первым употребил греческий философ и естествоиспытатель Зосима Панополитанский на рубеже IV и V веков.

Современная химия – это фундаментальная система знаний, основанная на богатом экспериментальном материале и теоретических положениях. Химия занимает особое место среди естественных наук. На сегодняшний день известно более 20 миллионов химических веществ. Часть из них встречается в природе. Однако большинство химических веществ ранее вообще не существовало. Они были получены человеком в химических лабораториях. В этом состоит уникальность химии: она не довольствуется тем, что дано природой, а постоянно создает для себя все новые и новые объекты исследований.

Каждое из химических веществ имеет свое внутреннее строение и может претерпевать разнообразные превращения, то есть вступать в химические реакции. Эти два аспекта взаимосвязаны. Внутреннее строение определяет химические свойства, а по химическим свойствам можно судить о строении вещества. В то же время невозможно одновременно исследовать и строение и химические свойства вещества, поскольку в ходе химической реакции структура вещества неизбежно изменяется. Изучение строения и реакционной способности химических веществ, создание веществ и материалов с заранее заданными свойствами – основные задачи химической науки.

Уже в XVIII веке начала формироваться так называемая минеральная химия. Сейчас этот раздел химии мы называем неорганической химией – в отличие от органической химии, которая первоначально исследовала вещества, образующиеся в живых организмах. Позднее были выделены в самостоятельные разделы еще две важнейшие области химии – аналитическая и физическая химия.

Дать точное определение каждому из этих разделов очень сложно, хотя в целом разница между ними вполне очевидна. Так, невозможно кратко ответить на вопрос: что такое неорганическая химия. Одно из наиболее удачных, хотя и не совсем полных определений звучит так: неорганическая химия – это экспериментальное исследование и теоретическая интерпретация свойств и реакций всех элементов и всех их соединений, кроме большинства углеводородов и их соединений.

Основные задачи современной неорганической химии – изучение строения, свойств и химических реакций простых веществ и соединений, взаимосвязи строения со свойствами и реакционной способностью веществ, разработка методов синтеза и глубокой очистки веществ, общих методов получения неорганических материалов.

Теоретическую основу неорганической химии составляет учение о Периодическом законе, созданное русским ученым - энциклопедистом Дмитрием Ивановичем Менделеевым (1834–1907). Несмотря на то, что этому закону уже более 100 лет, он по-прежнему является важнейшим инструментом для объяснения свойств и реакций химических элементов и их соединений. Периодическая система химических элементов, получившая в бытовой речи название – таблица Менделеева, – изображена во всех учебниках химии и знакома практически каждому. Предпринималось много попыток создать новую, более совершенную форму таблицы. В научной литературе описано около 700 ее вариантов. Были найдены круговые, треугольные и спиральные варианты, а также трехмерные модификации в виде этажерки, цилиндра, платформы с двумя башнями, объемной спирали, взаимопересекающихся плоскостей и т. д. Но самый распространенный на сегодня вариант близок к тому, который в свое время предложил Д. И. Менделеев.

С точки зрения теории строения атома, элементы в периодической системе расположены в последовательности увеличения зарядов их ядер, Внутри каждого периода по мере возрастания зарядов ядер элементов последовательно изменяется структура внешних электронных уровней. С этим связан переход элементов от металлов к неметаллам. В периодах слева направо, с увеличением зарядов ядер элементов, усиливается притяжение электронов к ядру и происходит сжатие атома, т. е. уменьшение атомного радиуса элементов. Поэтому в начале каждого периода располагаются элементы, имеющие больший атомный радиус и меньшее число электронов на внешнем электронном слое. Чем больше атомный радиус, тем слабее притяжение электронов внешнего слоя и тем легче элементу отдавать электроны. Такая структура характерна для элементов - металлов, которые сравнительно легко отдают валентные электроны, но не могут принимать их дополнительно для достройки электронных оболочек внешнего уровня.

С увеличением атомного номера элементов увеличивается заряд ядра и число электронов во внешнем слое и уменьшается легкость отдачи электронов с этого слоя. Таким образом, внутри каждого периода с увеличением атомных номеров элементов наблюдается уменьшение металлических свойств элементов и возрастание неметаллических свойств (способность притягивать к себе электроны). Каждый период заканчивается инертным элементом, имеющим завершенную структуру внешнего электронного слоя (полный октет).

Устойчивость такого октета объясняет пассивность инертных элементов, что не позволяет причислить их к металлам или неметаллам. В группах расположены элементы, имеющие одинаковое строение внешнего электронного слоя, т. е. электронные аналоги. Номер группы указывает число электронов на внешней электронной оболочке атомов элементов данной группы. Элементы, находящиеся в одной группе проявляют близкие химические свойства. Однако и внутри группы свойства элементов изменяются. Это связано с тем, что внутри каждой группы сверху вниз у элементов увеличивается число электронных слоев, т. е. атомный радиус. Чем больше атомный радиус, тем дальше от ядра электроны внешнего слоя и тем слабее они удерживаются ядром.

Таким образом, в группах сверху вниз усиливаются металлические и уменьшаются неметаллические свойства. В периодической таблице группы делятся на два типа: 8 групп IA- VIIIA и 8 групп IB- VIIIB. Группа VIIIB состоит из триад. В группах IА и IIA находятся s-элементы, у них последним заполняется электронами s-подуровень внешнего уровня. Далее, согласно правилам Клечковского, для элементов с главным квантовым числом n= 2 и n= 3 (второй и третий период) происходит заполнение р- подуровня. Это р- элементы, они располагаются в группах IIIA- VIIIA. Для элементов IV и V периода после заполнения электронами s- подуровня энергетически более выгодно заполнение соответственно 3d- и 4d- поуровней, что и происходит у элементов групп IB- VIIIB.

Группы типа В расположены в порядке, указывающем число валентных электронов атомов элементов, так как у d- элементов валентными являются электроны не только внешнего уровня, но и заполняемого второго снаружи уровня. После полного заполнения d- электронами второго снаружи уровня, происходит заполнение р- подуровня последнего электронного уровня (группы IIIA- VIIIA).

У актиноидов и лантаноидов происходит заполнение электронами f- подуровня третьего снаружи энергетического уровня, что и обуславливает схожесть их химических свойств.

Как видно, с учетом заполнения электронами энергетических уровней, в периодической таблице с увеличением атомных номеров элементов наблюдается периодическое повторение строения внешних электронных слоев, что и обусловливает периодичность свойств химических элементов.

С электронной конфигурацией атома связаны такие его свойства, как энергия ионизации, сродство к электрону, электроотрицательность, степень окисления.

  • Энергия ионизации- это энергия, необходимая для отрыва наиболее слабосвязанного электрона от атома. Она выражается в электронвольтах. При отрыве электрона от атома образуется заряженная частица- ион. В данном случае ион будет иметь положительный заряд. Такие ионы называются катионами. Для элементов одного периода энергия ионизации возрастает слева направо с увеличением неметаллических свойств у элементов. В группах энергия ионизации уменьшается сверху вниз с увеличением металлических свойств.

  • Сродство к электрону- это энергия, которая выделяется при присоединении к атому одного электрона Она также выражается в электронвольтах. При присоединении электрона к атому образуется отрицательно заряженный ион - анион. В периодах слева направо сродство к электрону увеличивается. Наибольшим сродством к электрону обладают галогены.

  • Электроотрицательность - это способность атома притягивать к себе электроны в соединении. Притягиваемые электроны являются валентными, т. е. это электроны, которые участвуют в химической связи. Инертные (благородные) элементы не обладают электроотрицательностью. Наиболее электроотрицательным из элементов является фтор.

  • Степень окисления- это формальный заряд атома в соединении, который возник бы, если бы все атомы в этом соединении были бы в виде ионов, а электроны смещены к наиболее электроотрицательному элементу. Номер группы в периодической системе численно равен положительной высшей степени окисления любого элемента данной группы в соединениях с кислородом.

Предмет изучения органической химии некогда ограничивался соединениями углерода, имеющими растительное и животное происхождение. В наше время органическая химия – это наука, изучающая природные и синтетические соединения углерода с другими элементами.

Ежегодно число синтезированных органических соединений возрастает на 250–300 тысяч. Оно превышает число известных неорганических соединений в десятки раз. Многообразие органических соединений определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, каркасы, образовывать прочные связи почти со всеми химическими элементами.

Основным методом органической химии является синтез. Теория химического строения органических веществ базируется на положениях, впервые сформулированных русским химиком Александром Михайловичем Бутлеровым (1828–1886). В органической химии можно выделить области исследований соединений, относящихся к различным классам и имеющих различное происхождение: химия ароматических соединений, химия природных соединений, нефтехимия.

До сих пор ведутся споры, можно считать самостоятельным разделом химии аналитическую химию. Вряд ли они состоятельны. Анализ – важнейший метод химии. До первой половины XIX века именно аналитическая химия была основным разделом химии. Аналитическая химия – это наука об определении химического состава веществ и, в некоторой степени, химического строения соединений.

Родоначальником научной аналитической химии считают английского физика и химика Роберта Бойля (1627–1691), который первым ввел понятие «химический анализ». Без тщательного, точного анализа развитие химии невозможно. Любой синтез обязательно сопровождается анализом. Для современных технологий необходимы особо чистые вещества, а содержание ничтожных долей примесей в них можно определить лишь аналитическими методами.

Основная цель аналитической химии – обеспечить точность, высокую чувствительность, быстроту, избирательность анализа. Развитие аналитической химии привело к возникновению химической диагностики, позволяющей непрерывно определять различные характеристики протекающих процессов и образующихся веществ.

В аналитической химии широко стали использоваться физико-химические и физические методы. Физические методы изучения веществ и воздействия на них получили применение и в других областях химии. Это привело к формированию новых важных направлений химии, например, радиационной химии, плазмохимии. Химия экстремальных воздействий играет большую роль в получении новых материалов, например для электроники, или давно известных ценных материалов, например алмазов, сравнительно дешевым синтетическим путем.

На грани исследований физических и химических явлений возникла физическая химия. Изучение тепловых эффектов химических реакций породило термохимию. Химические процессы, протекающие под действием электрического тока, стали основой электрохимии. В основу современной физической химии легли также учения о растворах, о скоростях и механизмах химических реакций, о строении молекул и многие другие. Физическая химия – это наука об общих законах, определяющих строение и химические превращения веществ в различных условиях. Термин «физическая химия» принадлежит М. В. Ломоносову (1711–1765), который в 1752 году впервые прочитал студентам Петербургского университета курс этой науки.

Она исследует химические явления с помощью теоретических и экспериментальных методов физики. Физическая химия является основным теоретическим фундаментом современной химии. В последние годы все большее внимание уделяется углубленному анализу общих закономерностей химических превращений на молекулярном уровне; широкому использованию математического моделирования; изучению воздействия на химические процессы сверхвысоких и сверхнизких температур и давлений, радиации и магнитного поля.

Все больше стираются границы и между химией и другими естественными науками. Биохимия – биологическая химия – изучает химический состав и структуру веществ, содержащихся в живых организмах; пути и способы регуляции их превращений; энергетическое обеспечение процессов, происходящих в клетке и в организме.

Становление биохимии как науки произошло на рубеже XIX и XX веков, хотя истоки биохимических знаний обнаружены еще в трудах ученых античного периода, а первые сведения о составе растительных и животных тканей начали появляться в средние века. В наши дни из биохимии уже выделились биоорганическая и бионеорганическая химия.

В начале XX века химик, минералог и кристаллограф Владимир Иванович Вернадский (1863–1945) разработал основы геохимии – науки о распространенности и миграции химических элементов на Земле. С одной стороны, геохимия широко использует достижения физики и химии, новейшие методы анализа и представления о строении вещества, с другой – огромный материал, накопленный геологическими науками, в частности, минералогией.

Наряду с физической химией возникла химическая физика, изучающая физические законы, которые управляют строением и превращениями химических веществ.

Особенности развития химии в ХХ веке во многом обусловлены достижениями физики в конце XIX века. Открытие рентгеновских лучей, радиоактивности, электрона и развитие квантовой теории привели к открытию радиоактивных элементов, новым представлениям о строении атома и природе химической связи. В ХХ веке было синтезировано 23 новых химических элемента, не найденных в природе, в том числе находящихся в Периодической системе после урана.

Дальнейшее развитие получил органический синтез. Во второй половине ХХ века искусственным путем были получены такие сложные природные вещества как хлорофилл и инсулин. Современная химия стала величайшей «производительной силой». Это выражается не только в многотоннажном производстве разнообразных химических продуктов. Стремительно растет число новых химических соединений, главным образом, органических.

Еженедельно в мире синтезируется не менее 10 тысяч новых веществ. Естественно, лишь немногие из них вызывают интерес и находят практическое применение, но ведь никто не знает, какое именно вещество понадобится завтра. Так что классическое определение химии может быть расширено: химики не только изучают вещества и их превращения, но и постоянное получают новые, ранее неизвестные. Постоянно разрабатываются новые химические материалы, необходимые для современной промышленности, техники, медицины и других сфер человеческой деятельности.


Список литературы


  1. Горелов А.А. Концепции современного естествознания: Учебное пособие для студентов высших учебных заведений, обучающихся по гуманитарным специальностям. – М.: Гуманит. изд. центр ВЛАДОС, 2002.

  2. Концепция современного естествознания: Под ред. профессора С.И. Самыгина. Изд. третье. Ростов н/Д: «Феникс», 2001 – 576 с.

  3. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.


3



1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Чтобы поднять самооценку мужчины, во время минета делайте вид, что слегка давитесь.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по химии "Эволюция теоретических проблем химии", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru