Реферат: Плотность жидкости при нормальной температуре кипения - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Плотность жидкости при нормальной температуре кипения

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 83 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Плотность жидкости при нормальной температуре кипения



Аддитивный метод Шредера

При изучении свойств органических жидкостей Шредером было сформулировано правило, в соответствии с которым при прогнозировании мольного объема чистой жидкости при нормальной температуре кипения следует сосчитать число атомов углерода, водорода, кислорода и азота в молекуле, добавить по единице на каждую двойную связь и сумму умножить на семь. При этом получаем мольный объем жидкости в см3/моль. Правило Шредера дает удивительно хорошие результаты для нормальных жидкостей - погрешность, как правило, не превышает 3-4% тон. Плотности сильно ассоциированных жидкостей прогнозируются с меньшей точностью. В дальнейшем аддитивный метод Шредера модифицировался самим автором и другими учеными. В табл. 6.5 приведены значения групповых вкладов в последней редакции Шредера и Ле Ба.


Таблица 6.5

Аддитивные составляющие для расчета молярных объемов Vb

органических веществ

Тип атома, группы, связи

Составляющая, см3/моль

Шредер

Ле Ба

Углерод

7

14,8

Водород

7

3,7

Кислород (за исключением приведенных ниже случаев):

7

7,4

в метиловых сложных и простых эфирах

9,1

в этиловых сложных и простых эфирах

9,9

в высших сложных и простых эфирах

11,0

в кислотах

12,0

Тип атома, группы, связи

Составляющая, см3/моль

Шредер

Ле Ба

соединенный с S, P, N

8,3

Азот:

7

с двойной связью

15,6

в первичных аминах

10,5

во вторичных аминах

12,0

Бром

31,5

27

Хлор

24,5

24,6

Фтор

10,5

8,7

Иод

38,5

37

Сера

21

25,6

Кольцо:


трехчленное

-7

-6,0

четырехчленное

-7

-8,5

пятичленное

-7

-11,5

шестичленное

-7

-15,0

нафталиновое

-7

-30,0

антраценовое

-7

-47,5

Двойная связь между атомами углерода

7

Тройная связь между атомами углерода

14


Неаддитивный метод Тина и Каллуса

Величина мольного объема жидкости при нормальной температуре кипения представлена в качестве функции критического объема:

,(6.13)

где и выражены в см3/моль.

Это простое соотношение хорошо прогнозирует для органических чистых жидкостей, погрешность не превышает 3% отн. при условии, что значения критического объема определены надежно.

Рассмотренные выше методы Шредера и Тина-Каллуса не распространяются на всю область насыщенных состояний жидкости. Они приложимы к одной точке в этой области - нормальной температуре кипения. Прогнозирование плотности насыщенной жидкости при любой температуре ниже может быть выполнено на основе некоторых уравнений состояния вещества, так, например, уравнения Бенедикта-Уэбба-Рубина для углеводородов. Однако целесообразнее использовать для этого специальные эмпирические корреляции, которые относительно просты и в большинстве случаев более точны.

Практически все корреляционные методы основаны на принципе соответственных состояний и требуют знания плотности насыщенной жидкости хотя бы при одной температуре. Поскольку даже такой минимум информации не всегда доступен, приходится прибегать к оценкам критической плотности вещества по его критическому объему. При отсутствии экспериментальных данных вычисление плотности может быть основано на коэффициенте сжимаемости жидкости при давлении насыщения, что рационально выполнять с использованием таблиц Ли-Кеслера (разд. 4). Ниже рассмотрены оба подхода.


Метод Ганна-Ямады

Метод предназначен для прогнозирования молярного объема и плотности неполярных или слабополярных жидкостей только на линии насыщения. Он основан на принципе соответственных состояний. Для прогнозирования необходимо как минимум знать ацентрический фактор и критические температуру и давление. Предложенная авторами корреляция имеет вид

,(6.14)

где - безразмерный параметр, - масштабирующий параметр, - ацентрический фактор. и являются функциями приведенной температуры. Для расчета рекомендованы корреляции двух видов:

при

;(6.15)

при

.(6.16)

Расчет значения производится по одному уравнению для любой температуры в диапазоне :

.(6.17)

При расчете масштабирующего параметра рекомендованы следующие подходы.

Если известен молярный объем насыщенной жидкости или ее плотность при приведенной температуре то расчет построен на основе этих сведений:

.(6.18)

Если экспериментальные данные для отсутствуют, то расчет масштабирующего параметра выполняется по уравнению

.(6.19)

В большинстве случаев масштабирующий параметр близок по значению к критическому объему .

При наличии экспериментальных сведений о плотности интересующей насыщенной жидкости при некоторой температуре масштабирующий параметр может быть исключен из расчета, и задача сводится к решению уравнения

,(6.20)

где , а их участие в уравнении следует понимать как температурный уровень, при котором вычисляются и , а не как сомножители.

Метод Ганна-Ямады считается наиболее точным из имеющихся в настоящее время методов прогнозирования плотности насыщенной жидкости при Tr < 0,99. Несмотря на то, что он рекомендован авторами для неполярных или слабо полярных веществ, результативность его зачастую оказывается достаточной и в приложении к полярным жидкостям.

Пример 6.4

Методом Ганна-Ямады рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения в диапазоне 298-650 К. Критические параметры и ацентрический фактор вещества приведены выше.

Решение

Молярный объем вещества при избранной температуре вычисляется по уравнению (6.14).

Поскольку экспериментальные данные для отсутствуют, то расчет масштабирующего параметра производим по уравнению (6.19):

82,05·650·(0,2920-0,0967·0,378)/31 = 439 см3/моль.

Результаты расчета плотности приведены в табл.6.6 и на рис. 6.9. Для 298 К имеем:

= 298/650 = 0,458;

= 0,29607 – 0,09045·0,458 –0,04842·0,4582 = 0,244;

= 0,33593–0,33953·0,458+1,51941·0,4582+1,11422·0,4584 = 0,354;

= 0,354·(1–0,378·0,244)·439 = 140,9 см3/моль;

= 134,222/140,9 = 0,952 г/см3 .


Метод Йена и Вудса

Метод предназначен для прогнозирования плотностей жидкостей при любых давлениях. В приложении к плотности насыщенной жидкости метод заключается в следующем. Приведенная плотность жидкости, находящейся на линии насыщения, коррелирована с приведенной температурой:

,(6.21)

где - мольная плотность насыщенной жидкости, - критическая плотность вещества, - приведенная температура.

Коэффициенты являются функциями критического коэффициента сжимаемости и вычисляются по уравнениям

;(6.22)

при ;(6.23)

при ;(6.24)

;(6.25)

.(6.26)

Пример 6.5

Методом Йена и Вудса рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения в диапазоне 298-650 К. Критический коэффициент сжимаемости изобутилбензола равен 0,28, критический объем составляет 480 см3/моль.

Решение

  1. Вычисляем значения коэффициентов Kj:

;

;

;

.

2. Критическая плотность изобутилбензола:

г/см3 .

3. Рассчитываем плотность жидкого изобутилбензола, находящегося на линии насыщения. Для 298 К имеем

=0,8056 г/см3.

Фрагмент результатов расчета при других температурах приведен в табл. 6.6., на рис. 6.9. дается сопоставление их с полученными методом Ганна-Ямады и другими методами.


Метод Чью-Праусница

Метод предназначен для прогнозирования плотности жидкости при любых давлениях. В приложении к жидкому состоянию на линии насыщения метод заключается в следующем. Отношение критической плотности ?c к плотности насыщенной жидкости ?s коррелировано с приведенной температурой и ацентрическим фактором:

.

Для расчета предложены следующие эмпирические уравнения:

;(6.27)

;(6.28)

(6.29)

Пример 6.6

Методом Чью и Праусница рассчитать плотность жидкого изобутилбензола, находящегося на линии насыщения, в диапазоне 298-650 К. Критический объем составляет 480 см3/моль.

Решение

1. Вычисляем значения функций . Для 298 К имеем

;

;

.

2. Вычисляем критическую плотность

г/см3.?

3. Рассчитываем плотность изобутилбензола при 298 К:

г/см3.

Результаты расчета плотности насыщенной жидкости при других температурах приведены в табл. 6.6. и сопоставлены на рис. 6.9. с данными, полученными методами Ганна-Ямады и Йена-Вудса.

Таблица 6.6

Плотность жидкого изобутилбензола (г/см3) на линии насыщения,

вычисленная методами Ганна-Ямады (), Йена-Вудса ()

и Чью-Праусница ()



Т, К

V

323

0,497

0,239

0,362

144,5

0,929

0,789

0,3760

-0,1921

0,2659

0,8189

373

0,574

0,228

0,380

152,3

0,882

0,753

0,3834

-0,1271

0,1062

0,7976

473

0,728

0,205

0,426

172,4

0,779

0,671

0,4238

-0,0408

-0,1195

0,7145

573

0,882

0,179

0,512

209,7

0,640

0,556

0,5091

-0,0094

-0,2057

0,5872

648

0,997

0,158

0,817

337,4

0,398

0,348

0,8333

-0,2592

0,4746

0,3481





Р и с. 6.9. Зависимость плотности изобутилбензола

от температуры


Из сопоставления следует, что все рассмотренные методы единообразно передают характер изменения плотности изобутилбензола с изменением температуры, наибольшее различие в оценках составляет 18% отн. и относится к 298 К. Причем метод Йена-Вудса дает меньшие значения плотности во всем диапазоне температур. Опыт нашей работы показывает, что из рассмотренных методов предпочтение следует отдавать методам Ганна-Ямады, Чью-Праусница и методу, основанному на коэффициентах сжимаемости, которые вычислены по таблицам Ли-Кеслера или аналитическому уравнению состояния Бенедикта-Уэбба-Рубина.


Плотность ненасыщенной жидкости

При прогнозировании плотности ненасыщенной жидкости в основном используются следующие подходы.

1. В качестве опорного значения плотности принимается плотность насыщенной жидкости при рассматриваемой температуре; вычисляется вклад в плотность, обусловленный изменением давления от уровня давления насыщенного пара до заданного, и рассчитывается плотность жидкости под давлением.

2. По таблицам Ли-Кеслера или по уравнению состояния вещества вычисляется коэффициент сжимаемости при заданных температуре и давлении, после чего вычисляется молярный объем вещества и его плотность.



1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Я поверю в перспективы российской экономики и в особенности ее высокотехнологичных отраслей, когда наши птицефабрики научатся отмывать яйца от куриного дерьма.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по химии "Плотность жидкости при нормальной температуре кипения", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru