Реферат: Медь и её природные соединения, синтез малахита - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Медь и её природные соединения, синтез малахита

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 247 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

Цель работы. Синтезировать 5 г. Малахита, рассчитать практический выход продукта, научиться пользоваться необходимой литературой, выбирать из неё необходимую информацию, и представлять полученные результаты. Литературный обзор. Медь и её природные соединения. Введение. Медь – элемент 1В группы Периодической системы , плотность 8,9 г см -3 , один из первых металлов , ставших известными человеку . Считают , что медь начали использовать около 5000 до н.э . В природе медь изредка встречается в виде металла . Из медных самородков , возможно , с помощью каменных топоров , были изготовлены первые металлические орудия труда . У индейцев , жи в ших на его берегах оз . Верхнее (Сев . Америка ), где есть очень чистая самородная медь , способы ее холодной обработки были известны до времен Колумба . Около 3500 до н.э . на Ближнем Востоке медь научились извлекать из руд , ее получали восстановлением углем . М едные рудники были и в Древнем Египте . Известно , что глыбы для знаменитой пирамиды Хеопса обрабатывали медным инструментом . [1] К 3000 до н.э. в Индии, Месопотамии и Греции для выплавки более твердой бронзы в медь стали добавлять олово. Открытие бронзы могло произойти случайно, однако ее преимущества по сравнению с чистой медью быстро вывели этот сплав на первое место. Так начался «бронзовый век». Изделия из бронзы были у ассирийцев, египтян, индусов и других народов древности. Однако цельные бронзовые статуи древние мастера научились отливать не раньше 5 в. до н.э. Около 290 до н.э. Харесом в честь бога солнца Гелиоса был создан Колосс Родосский. Он имел высоту 32 м и стоял над входом во внутреннюю гавань древнего порта острова Родоса в восточной части Эгейского моря. Гигантская бронзовая статуя была разрушена землетрясением в 223 н.э. Предки древних славян, жившие в бассейне Дона и в Приднепровье, применяли медь для изготовления оружия, украшений и предметов домашнего обихода. Русское слово «медь», по мнению некоторых исследователей, произошло от слова «мида», которое у древних племен, населявших Восточную Европу, обозначало металл вообще. Символ Cu происходит от латинского aes cyproum (позднее, Cuprum ), так как на Кипре ( Cyprus ) находились медные рудники древних римлян. Относительное содержание меди в земной коре составляет 6,8·10 – 3 %. Самородная медь встречается очень редко. Обычно элемент находится в виде сульфида, оксида или карбоната. Важнейшими рудами меди являются халькопирит CuFeS 2 , который, по оценкам, составляет около 50% всех месторождений этого элемента, медный блеск (халькоцит) Cu 2 S , куприт Cu 2 O и малахит Cu 2 CO 3 ( OH ) 2 . Большие месторождения медных руд найдены в различных частях Северной и Южной Америк, в Африке и на территории нашей страны. В 18– 19 вв. близ Онежского озера добывали самородную медь, которую отправляли на монетный двор в Петербург. Открытие промышленных месторождений меди на Урале и в Сибири связано с именем Никиты Демидова. Именно он по указу Петра I в 1704 начал чеканить медные деньги. Богатые месторождения меди давно выработаны. Сегодня почти весь металл добывается из низкосортных руд, содержащих не более 1% меди. Некоторые оксидные руды меди могут быть восстановлены непосредственно до металла нагреванием с коксом. Однако большая часть меди производится из железосодержащих сульфидных руд, что требует более сложной переработки. Эти руды сравнительно бедные, и экономический эффект при их эксплуатации может обеспечиваться лишь ростом масштабов добычи. Руду обычно добывают в огромных карьерах, где используются экскаваторы с ковшами до 25 м 3 и грузовики грузоподъемностью до 250 т. Сырье размалывают и концентрируют (до содержания меди 15– 20%) с использованием пенной флотации, при этом серьезной проблемой является сброс многих миллионов тонн тонко измельченных отходов в окружающую среду. К концентрату добавляют кремнезем, а затем смесь нагревают в отражательных печах (доменные печи для тонко измельченной руды неудобны) до температуры 1400° С, при которой она плавится.[3] Суммарное уравнение протекающих реакций можно представать в виде: 2CuFeS 2 + 5O 2 + 2SiO 2 = 2Cu + 2FeSiO 3 + 4SO 2 Cu +1 + 1e – = Cu 0 | Fe +3 + 1e – = Fe +2 | – 10 e – 2 S -2 – 12 e – = 2 S +4 | O 2 + 4 e – = 2 O -2 Большую часть полученной черновой меди очищают электрохимическим методом, отливая из нее аноды, которые затем подвешивают в подкисленном растворе сульфата меди CuSO 4 , а катоды покрывают листами очищенной меди. В процессе электролиза чистая медь осаждается на катодах, а примеси собираются около анодов в виде анодного шлама, который является ценным источником серебра, золота и других драгоценных металлов. Около 1/3 используемой меди представляет собой вторичную медь, выплавленную из лома. Годовое производство нового металла составляет около 8 млн. т. Лидируют по производству меди Чили (22%), США (20%), СНГ (9%), Канада (7,5%), Китай (7,5%) и Замбия (5%). [2] Главное применение металла – в качестве проводника электрического тока. Кроме того, медь используется в монетных сплавах, поэтому ее часто называют «монетным металлом». Она также входит в состав традиционных бронзы (сплавы меди с 7– 10% олова) и латуни (сплав меди с цинком) и специальных сплавов, таких как монель (сплав никеля с медью). Металлообрабатывающий инструмент из медных сплавов не искрит и может использоваться во взрывоопасных цехах. Сплавы на основе меди служат для изготовления духовых инструментов и колоколов. [4] Свойства Меди. В виде простого вещества медь обладает характерной красноватой окраской. Медь металл мягкий и пластичный. По электро- и теплопроводности медь уступает только серебру. Металлическая медь, как и серебро, обладает антибактериальными свойствами. Медь устойчива в чистом сухом воздухе при комнатной температуре, однако при температуре красного каления образует оксиды. Она реагирует также с серой и галогенами. В атмосфере, содержащей соединения серы, медь покрывается зеленой пленкой основного сульфата. В электрохимическом ряду напряжений медь находится правее водорода, поэтому она практически не взаимодействует с неокисляющими кислотами. Металл растворяется в горячей концентрированной серной кислоте, а также в разбавленной и концентрированной азотной кислоте. Кроме того, медь можно перевести в раствор действием водных растворов цианидов или аммиака: 2Cu + 8NH 3 ·H 2 O + O 2 = 2[Cu(NH 3 ) 4 ](OH) 2 + 6H 2 O В соответствии с положением меди в Периодической системе, ее единственная устойчивая степень окисления должна быть (+ I ), но это не так. Медь способны принимать более высокие степени окисления, причем наиболее устойчивой, особенно в водных растворах, является степень окисления (+ II ). В биохимических реакциях переноса электрона, возможно, участвует медь( III ). Эта степень окисления редко встречается и очень легко понижается под действием даже слабых восстановителей. Известно несколько соединений меди(+ IV ). При нагревании металла на воздухе или в кислороде образуются оксиды меди: желтый или красный Cu 2 O и черный CuO. Повышение температуры способствует образованию преимущественно оксида меди(I) Cu 2 O. В лаборатории этот оксид удобно получать восстановлением щелочного раствора соли меди(II) глюкозой, гидразином или гидроксиламином: 2CuSO 4 + 2NH 2 OH + 4NaOH = Cu 2 O + N 2 + 2Na 2 SO 4 + 5H 2 O Эта реакция – основа чувствительного теста Фелинга на сахара и другие восстановители. К испытываемому веществу добавляют раствор соли меди( II ) в щелочном растворе. Если вещество является восстановителем, появляется характерный красный осадок. [5] Поскольку катион Cu + в водном растворе неустойчив, при действии кислот на Cu 2 O происходит либо дисмутация, либо комплексообразование: Cu 2 O + H 2 SO 4 = Cu + CuSO 4 + H 2 O Cu 2 O + 4HCl = 2 H[CuCl 2 ] + H 2 O Оксид Cu 2 O заметно взаимодействует со щелочами. При этом образуется комплекс: Cu 2 O + 2 NaOH + H 2 O =2 Na [ Cu ( OH ) 2 ] Для получения оксида меди( II ) CuO лучше всего использовать разложение нитрата или основного карбоната меди( II ): 2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2 (CuOH) 2 CO 3 = 2CuO + CO 2 + H 2 O Оксиды меди не растворимы в воде и не реагируют с ней. Единственный гидроксид меди Cu ( OH ) 2 обычно получают добавлением щелочи к водному раствору соли меди( II ). Бледно-голубой осадок гидроксида меди( II ), проявляющий амфотерные свойства (способность химических соединений проявлять либо основные, либо кислотные свойства), можно растворить не только в кислотах, но и в концентрированных щелочах. При этом образуются темно-синие растворы, содержащие частицы типа [ Cu ( OH ) 4 ] 2– . Гидроксид меди( II ) растворяется также в растворе аммиака: Cu ( OH ) 2 + 4 NH 3 H 2 O = [ Cu ( NH 3 ) 4 ]( OH ) 2 + 4 H 2 O Гидроксид меди( II ) термически неустойчив и при нагревании разлагается: Cu ( OH ) 2 = CuO + H 2 O Есть сведения о существовании темно-красного оксида Cu 2 O 3 , образующегося при действии K 2 S 2 O 8 на Cu ( OH ) 2 . Он является сильным окислителем, при нагревании до 400° С разлагается на CuO и О 2 . Катион меди( II ), напротив, в водном растворе вполне устойчив. Соли меди( II ), в основном, растворимы в воде. Голубой цвет их растворов связан с образованием иона [ Cu ( H 2 O ) 4 ] 2+ . Они часто кристаллизуются в виде гидратов. Водные растворы в небольшой степени подвержены гидролизу и из них часто осаждаются основные соли. Основный карбонат есть в природе – это минерал малахит, основные сульфаты и хлориды образуются при атмосферной коррозии меди, а основный ацетат (ярь-медянка) используется в качестве пигмента. Ярь-медянка известна со времен Плиния Старшего (23– 79 н.э.). В русских аптеках ее начали получать в начале 17 в. В зависимости от способа получения она может быть зеленого или голубого цвета. Ею были окрашены стены царских палат в Коломенском в Москве. Наиболее известную простую соль – пентагидрат сульфата меди( II ) CuSO 4 ·5 H 2 O – часто называют медным купоросом. Слово купорос, по-видимому, происходит от латинского Cipri Rosa – роза Кипра. В Росси медный купорос называли синим, кипрским, затем турецким. То, что купорос содержит медь, было впервые установлено в 1644 Ван Гельмонтом. В 1848 Р.Глаубер впервые получил медный купорос из меди и серной кислоты. Сульфат меди широко используется в электролитических процессах, при очистке воды, для защиты растений. Он является исходным веществом для получения многих других соединений меди. Тетрааммины легко образуются при добавлении аммиака к водным растворам меди( II ) до полного растворения первоначально выпавшего осадка. Темно-синие растворы тетраамминов меди растворяют целлюлозу, которую можно вновь осадить при подкислении, что используется в одном из процессов для получения вискозы. Приливание этанола к раствору вызывает осаждение [ Cu ( NH 3 ) 4 ] SO 4 · H 2 O . Перекристаллизация тетраамминов из концентрированного раствора аммиака приводит к образованию фиолетово-синих пентаамминов, однако пятая молекула NH 3 , легко теряется. Гексааммины можно получить только в жидком аммиаке, и их хранят в атмосфере аммиака. Медь( II ) образует плоско-квадратный комплекс с макроциклическим лигандом фталоцианином. Его производные используются для получения ряда пигментов от синего до зеленого, которые устойчивы вплоть до 500° С и широко используются в чернилах, красках, пластиках и даже в цветных цементах. [6] Медь имеет важное биологическое значение. Ее окислительно-восстановительные превращения участвуют в различных биохимических процессах растительного и животного мира. Высшие растения легко переносят сравнительно большое поступление соединений меди из внешней среды, низшие же организмы, наоборот, чрезвычайно чувствительны к этому элементу. Самые незначительные следы соединений меди их уничтожают, поэтому растворы сульфата меди или их смеси с гидроксидом кальция (бордосская жидкость) применяют как противогрибковые средства. Из представителей животного мира наибольшие количества меди содержатся в телах осьминогов, устриц и других моллюсков. В их крови она играет ту же роль, что железо в крови других животных. В составе белка гемоцианина она участвует в переносе кислорода. Неокисленный гемоцианин бесцветен, а в окисленном состоянии он приобретает голубовато-синюю окраску. Поэтому не зря говорят, что у осьминогов – голубая кровь. Организм взрослого человека содержит около 100 мг меди, сосредоточенной, в основном, в белках, только содержание железа и цинка выше. Ежедневная потребность человека в меди составляет около 3– 5 мг. Дефицит меди проявляется в анемии, однако избыток меди также опасен для здоровья. Химические свойства меди. Медь — электроположительный металл. Относительную устойчивость ее ионов можно оценить на основании следующих данных: Cu 2+ + e
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Сборной России по футболу надо тоже будет запретить парад в Москве!!!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по химии "Медь и её природные соединения, синтез малахита", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru