Диплом: Колебательные спекторы бета-дикетонатов палладия (II) и их интерпретация - текст диплома. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Диплом

Колебательные спекторы бета-дикетонатов палладия (II) и их интерпретация

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Дипломная работа
Язык диплома: Русский
Дата добавления:   
 
Скачать
Архив Zip, 402 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




Министерство высшего и среднего специального образования

Российской Федерации

Новосибирский Ордена Трудового Красного Знамени Государственный

Университет им. Ленинского комсомола

Факультет естественных наук

Химическое отделение







Новосибирск 2002



Дипломная работа: Колебательные спектры бета-дикетонатов палладия (II) и их интерпретация.
























Выполнил:

Студент 7402 группы

    1. Филатов Егор Сергеевич


Руководители:

д.х.н. Игуменов Игорь Константинович (ИНХ СО РАН)

к.х.н. Басова Тамара Валерьевна

(ИНХ СО РАН)














ОГЛАВЛЕНИЕ

      1. Введение………………………………………………………………………………………

1.Литературный обзор

    1. Синтез…………………………………………………………………………………….

    2. Особенности структуры………………………………………………………………..

    3. Колебательные спектры……………………………………………………………….

    4. Теория колебательной спектроскопии……………………………………………….

      1. Многоатомная система……………………………………………………………..

      2. Поляризованные линии в КР спектрах…………………………………………..

2.Экспериметальная часть

2.1. Синтез и очистка b-дикетонатов палладия (II)…………………………………….

2.1.1. Исходные реагенты……………………………………………………………………

2.1.2. Методика синтеза……………………………………………………………………..

2.1.3. Метод очистки…………………………………………………………………………

2.2. Аппаратура и методы исследования………………………………………………...

2.2.1. Регистрация колебательных спектров b-дикетонатов палладия (II)………...

2.2.1.1. Спектры ИК-поглощения кристаллической фазы……………………………

2.2.1.2. Спектры КР кристаллической фазы b-дикетонатов палладия (II)………...

2.2.1.3. Спектры КР растворов b-дикетонатов палладия (II) бензоле……………….

2.2.1.4. КР спектры газовой фазы b-дикетонатов палладия (II)……………………..

2.2.2. Рентгеноструктурные данные……………………………………………………..

2.2.3. Анализ нормальных колебаний b-дикетонатов палладия…………………….

2.2.3.1. Методика расчёта колебательных спектров и представление результатов.

2.2.4. Получение и исследование слоёв b-дикетонатов палладия…………………….

2.2.4.1. Нанесение слоёв b-дикетонатов палладия………………………………………

2.2.4.2. Аппаратура и методы исследования слоёв b-дикетонатов……………………

3.Результаты и их обсуждение

3.1. Анализ внутримолекулярных колебаний…………………………………………..

3.2. Определение симметрии молекулярных колебаний в КР и ИК спектрах

b-дикетонатов палладия……………………………………………………………………...

3.3. Расчет спектров КР и ИК b-дикетонатов палладия…………………………………

3.4. Получение и исследование пленок бета-дикетонатов………………………………..

3.4.1. Исследование пленок бета-дикетонатов методом спектроскопии КР……………

3.5.Исследование КР спектров газовой фазы бета-дикетонатов

палладия (II)…………………………………………………………………………………….

        1. Выводы……………………………………………………………………………

Литература……………………………………………………………………….
































ВВЕДЕНИЕ.

На протяжении всей истории химии перед учёными неизменно возникала необходимость знать, какие химические соединения находятся в колбе, реторте или пробирке, каковы их структура и свойство, во что и как быстро они превращаются при заданных условиях. Простые качественные или количественные химические методы очень скоро перестали удовлетворять исследователей: далеко не всегда удавалось объяснить поведение соединения, исходя из его элементного состава и обнаруженных в нём химических групп. Один за другим стали разрабатываться методы, в которых исследуемое соединение (или соединения), находящееся в определённом агрегатном состоянии, зондируется электромагнитными излучениями различной частоты или пучками ускоренных элементарных частиц, а информация извлекается из характеристик излучения, прошедшего через вещество или отражённого им.

Методы колебательной спектроскопии продолжают относиться к наиболее широко применяемым химиками физическим методом исследования. Известно, что для получения достоверной и достаточно полной спектроскопической информации необходимо проведение расчётного анализа колебаний молекул с использованием максимально возможного набора экспериментальных данных. Кроме частот колебаний в спектрах ИК поглощения, КР и типов симметрии колебаний, необходимо использовать ИК -, КР-спектры гомологических рядов соединений, их изотопных аналогов и др. [1,2,4,5].

Бета-дикетонатные комплексы представляют интерес, как с точки зрения фундаментальных исследований, так и их практического применения. Являясь представителем класса координационных соединений, они относятся к комплексам с бидентатными (хелатными) лигандами. Бета-дикетонатные комплексы применяются для получения различного рода металлических и оксидных покрытий в процессах осаждения из газовой фазы (метод MO CVD), в качестве катализаторов.

В данной работе в качестве модельных соединений выбраны комплексы палладия(II) с b-дикетонными лигандами, содержащими алифатические, трифторметильные и фенильные заместители. Физико-химические свойства соединений этого типа с общей формулой Pd(R-CO-CH-CO-R)2, где в качестве лигандов использовались: R=CH3 - ацетилацетон (аа) [6], R=CF3 - гексафторацетилацетон (hfa) [7,8], R= C(CH3)3 - дипивалоилметан (dpm) [9], R= C6H5- дибензоилметан (dbm) [10].





  1. 1. ЛИТЕРАТУРНЫЙ ОБЗОР.

    1. СИНТЕЗ.

В литературе имеется ряд работ, посвященных синтезу b-дикетонатов Pd(II) [6–10].

Общая схема (схема1) синтеза b-дикетонатов Pd(II) выглядит следующим образом:

1.Стадия получения аква-иона (индуцированная сольватация).

K2PdCl4 (раст.) + Hg(ClO4)2 (раст.) + 4H2Oж. [Pd(H2O)4]2+Cl2 (раст.) + 2KClO4 (крист.) +

+ 2HgCl2 (крист.)

2.Стадия получения калия b-дикетоната.

  1. KOH(вод. раст.) + HL(спирт. раст.) KL(водно-спирт. раст.) + H2Oж.

3.Стадия образования комплекса.

[Pd(H2O)4]2+(ClO4)2 (раст.) + 2KL(водно-спирт. раст.) PdL2 (крист.)


Схема 1. Синтез b-дикетонатов Pd(II).


    1. ОСОБЕННОСТИ СТРУКТУРЫ.

Кристаллы выше описанных b-дикетонатов Pd(II) относятся к молекулярному типу. b-дикетонатные лиганды бидентантно координируют центральный атом Pd двумя атомами кислорода, образуя шестичленные хелатные металлоциклы. Атом Pd имеет устойчивую, слегка искаженную плоско-квадратную координацию четырьмя атомами кислорода. Расстояния Pd-O находятся в узком интервале 1.95 - 1.99 ? и мало зависят от заместителя в лиганде [11]. Хелатные углы при атоме Pd лежат в пределах 93.3 - 96.0о. Шестичленные металлоциклы во всех комплексах не плоские, углы перегиба по линии О..О (О..N) лежат в пределах 0.2-9.7о, при этом легкие атомы металлоциклов располагаются в одной плоскости. Значения расстояний О..С со стороны разных заместителей находятся в пределах 1.23-1.31 ?, С..Сg - 1.36-1.48 ?. Углы в металлоциклах при легких атомах меняются от 120о до 130о. Углы при углероде, связанным с трифторметильным заместителем состовляют 129-130о. Расстояния С...Сзам находятся в пределах 1.44-1.55 ?. Наблюдается выравнивание связей С..Сg и С...Сзам при фенильных заместителях [11,12].

Строение заместителей в молекулах b-дикетонатов обычное и совпадает со строением аналогичных групп в органических соединениях. CF3 и But группы в кристаллах часто ротационно разупорядочены, а атомы фтора имеют высокие значения тепловых факторов. Плоскости фенильных заместителей повернуты относительно плоскости металлоциклов в Pd(dbm)2 на 6 и 9о. В общем можно заключить, что геометрические характеристики молекул b-дикетонатов Pd(II) достаточно близки между собой. Структурные характеристики бета-дикетонатов палладия(II) приведены в таблице 1.

Таблица 1.

Структурные характеристики бета-дикетонатов палладия(II).

Соединение

рентгенографические данные

геометрические характеристики комплексов

Литера-

тура

а

b

с

a

b

g

пр.гр

z

V/z

rвыч.

дист.

Pd-O

Угол

O-Pd-O

e*

1


Pd(aa)2

10.835

5.148

10.125

93.32

P21/n

2

268

1.79

1.961

1.957

96.0

5.0*

[6]

2

Pd(hfa)2

12.279

12.815

4.894

93.63

91.81

89.51

P-1

2

384

2.25

1.987

1.955

1.963

1.961

93.7

0.2*

94.9

1.1*

[7,8]

3

Pd(dpm)2

11.245

12.008

9.851

110.17

P21/n

2

624

1.966

1.977

93.8

1.4*

[9]

4

Pd(dbm)2

17.370

5.780

24.230

103.0


I2/c

4

593

1.964

1.953

93.6

2.6*

[10]

*e – угол перегиба металлоцикла.

В кристаллах b-дикетонатов палладия квадратная координация центрального атома Pd дополняется до бипирамидальной слабыми межмолекулярными взаимодействиями преимущественно с метиновым атомом углерода металлоциклов соседних молекул, но иногда и атомами заместителей С или F. Эти контакты лежат в пределах 3.3 - 3.8 ? [11].

b-Дикетонаты Pd(II) являются летучими соединениями. Данные температурной зависимости давления насыщенных паров, исследованной эффузионным методом Кнудсена [13], представлены в таблице 2.

Таблица 2.

Термодинамические параметры сублимации бета-дикетонатов палладия(II).

комплекс

R1-CO-CH-CO-R2

DТ, град

lnP(torr)=B-A/T

–6Нosubl

кДж/моль

6Sosubl

Дж/(моль град)

R1

R2

B

A

Pd(aa)2

СH3

СH3

74-143

28.32

15670

130.1±2.77

235.2±7.06

Pd(hfa)2

CF3

CF3

20-40

22.48

10159

84.6±1.6

186.7±6.2

Pd(dpm)2

C(CH3)3

C(CH3)3

70-128

27.88

15106

125.4±1.42

231.5±3.76

Pd(dbm)2

C6H5

C6H5

-

-

-

-

-



    1. КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ.

Большое количество работ по колебательным спектрам бета-дикетонатов металлов было опубликовано в 60-70 годы. Начало систематических исследований можно отнести к работам Накомото с сотр. [14, 15, 16], в монографии [17] (для расчёта использованы только частоты колебаний активных в ИК спектрах). Следует отметить и работу [18], в которой авторы исследовали ИК-спектры Cu(аа)2 и Pd(аа)2, в которых последовательно были замещены на изотопы (D, 13C, 18O) все атомы хелатных лигандов. Эмпирическая интерпретация спектров ИК и КР ацетилацетонатов с использованием поляризационных характеристик линий КР и спектров дейтерированных комплексов проведена в работе [19]. Авторы [20] представили зависимость частоты ИК-моды металл-лиганд как функцию от металлов I переходного ряда Sc-Co.

Наиболее выдающимися исследованиями являются более поздние работы по исследованию колебательных спектров бета-дикетонатов, проведенные группой исследователей нашего Института [21,22,23]. В основу этих работ положено комплексное исследование колебательных спектров бета-дикетонатов и во всех возможных случаях проводится параллельный расчет нормальных колебаний с привлечением максимально доступного числа экспериментальных данных – частот, типов симметрии, изотопных смещений – и последующий анализ поведения силовых постоянных в химических рядах.

Для комплексов бета-дикетонатов Сu(II), Pd(II), Pt(II) существенные изменения КР спектров при переходе из кристаллической фазы в раствор наблюдаются в области частот ниже 180 см-1 (смешанные деформационные и «внешние» колебания молекул в кристалле). В области «внутренних» колебаний (выше 180 см-1) спектры КР комплексов в различных фазах адекватны друг другу, как по интенсивности линий, так и по частоте колебаний. В работе [24] показано, что ИК спектры бета-дикетонатов (Cr(II), Cu(II), Ni(II)) в области их стабильного существования в газовой фазе соответствуют спектрам твёрдой фазы. Повышение температуры газовой фазы до преддиссоциации комплекса приводит к появлению новых ИК полос в области 1700-1800 см-1 и в области 500-600 см-1 (колебания связей CC, CО и М—О). Этот факт связывается с раскрытием хелатного цикла и осуществлением монодентатной координации бета-дикетона. Спектры КР бета-дикетонатов в газовой фазе не изучались.

Упрощённый модельный расчёт бета-дикетонатных комплексов с заместителями СН3, СF3, С6Н5 проведён в [25]. Сделан вывод об отсутствии заметного изменения делокализации p-электронов при введении в хелат вместо СН3-группировок заместителей СF3 или С6Н5.

Так, в работе [22] сделан расчёт распределения потенциальной энергии колебаний и интерпретация экспериментальных спектров бета-дикетонатов Cu(II). Поведение частоты полносимметричного колебания металл-лиганд, в котором атом металла не смещается, позволяет проследить за изменением силовой константы без проведения расчётов колебательного спектра, такое исследование было проведено в работе [26] на кристаллах первого переходного ряда, восьмой (Co-Ir) и третьей (Al-In) групп.

Колебание ns (M-O) легко узнаваемо в спектрах ацетилацетонатов металлов, так как соответствующая ему линия интенсивная, а часто и самая интенсивная в спектре. Однако в этом колебании кроме изменения длины связи М-О происходит смещение и периферийных атомов лиганда, что было продемонстрировано на спектрах дейтерированных ацетилацетонатов металлов. В них наблюдается частотныё сдвиг большинства линий, в том числе и линий колебания связи М-О и по мнению авторов [27] кинематические эффекты такого рода практически исключают возможность корректного сравнения частот n(МО) для разных лигандов, несмотря на то, что для каждого лиганда в отдельности они определены, однако для изолигандного ряда ролью кинематических эффектов можно пренебречь. Анализ изменения частот ИК-активных колебаний n(МО) при замещении радикалов R= СН3 на СF3 и С(СН3)3 проведён в [28,29]. Авторы пришли к выводу об увеличении прочности связи металл-лиганд в ряду лигандных заместителей СН3<СF>3<С>3)3.

Полный набор рассчитанных и экспериментальных частот, частотных сдвигов при изотопозамещении, интерпретация спектров Cu(aa)2, Cu(hfa)2, Cu(dpm)2, Cu(dbm)2 и полный набор силовых постоянных приведены в работах [22,30].

Кроме того, в этих работах на примере комплексов меди построена зависимость силовой постоянной металл-лиганд от природы радикала лиганда. Для бета-дикетонатов d-элементов показано, что в рядах по металлу силовая постоянная связи М-О растет с ростом количества de-электронов металла и с понижением их потенциала ионизации. Определяющим эффектом изменения силовой постоянной является донорное взаимодействие металла и лиганда. Общая тенденция возрастания частоты колебания ns(M-O) в рядах Sc-Co , Со-Ir, определяется тем, что de-электроны металла взаимодействуют с пустой p-разрыхляющей орбиталью лиганда, что приводит к необходимости их размещения на связующей орбитали комплекса.

Для комплексов меди (II) в рядах по лиганду силовая постоянная увеличивается в последовательности:

ДПМ<АА>

Сравнительный анализ колебаний для Cu(aa)2 проведённый в разных работах представлен в таблице 3.

Таблица 3.

Сопоставление интерпретаций колебательных спектров Cu(aa)2 по работам [31,18,32]

n, см-1

Отнесение

ИК

КР

[31]

[18]

[32]


209

d цикла



217





268



n (МО)+ d цикла


291



n (МО)



410

d цикла



445



d цикла

?


450

n (МО)



457



n (МО)

n (МО)


564



590





615



d(ССН3)+ dцикла+n (МО)

n (МО)

655



d(ССН3)

g(С—С—С)

685



d(С—С)+ dцикла+n (МО)

n(ССН)+ dцикла+d(С—СН)


690

n (МО)+ d цикла




781




787



g(С—С—Н)

g(С—С—Н)

940



n(СО)+n(СС)

dцикла


941

n(С—СН)



1023



СН3 качание

r(СН3)+g(СН3)


1023

СН3 качание




1190

d(С—С—Н)



1191



d(С—С—Н)

d(С—С—Н)+ n(СО)

1280






1280

n(С—С)

n(С—С)+n(СС)

g(ССС)

1357



d(СН3)

d(СН3)


1370

d(СН3)



1415



d(СН3)

n(СО)

1447



n(СО)+d(ССН)

d(СН3)

1538



n(СО)+n(СС)

n(ССС)+ d(ССН)

1553



Комбинация?


1583



n(СО)+n(СС)

n(СО)


1583

n(СО)



    1. Теория колебательной спектроскопии.

1.4.1. Многоатомная система.

Теперь перейдем к краткому рассмотрению N-атомной системы. В таких системах все ядра совершают свои собственные гармонические колебания, любое из этих колебаний можно представить в виде суперпозиции нормальных колебаний.

Кинетическая энергия такой системы в декартовом пространстве имеет следующий вид:

T=?SmN [(dDxN/dt)2 + (dDyN/dt)2 + + (dDzN/dt)2] (1)

При использовании обобщённых координат (q1=Dx1?m1, q1=Dy1?m1, q1=Dz1?m1, q1=Dx2?m2…..) выражение для кинетической энергии примет вид:

T=?S (dqi/dt)2 (суммирование производится от i до 3N) (2)

Потенциальная энергия такой системы являет собой сложную функциональную зависимость обобщённых координат. При малых отклонениях от положения равновесия данную функцию можно разложить в ряд Тейлора

U(q1, q2, …,qi, …, q3N)=U0 + ?(¶U/¶qi)0qi + ??(¶2U/¶qi ¶qj)0qiqj + …, (3)

так как производные берутся в положении равновесия (qi=0), то константу V0 можно положить равной нулю, а члены, содержащие (¶V/¶qi)0, так же становятся равными нулю. Формула примет вид

U=?(¶2U/¶qi¶qj)0qiqj=??bijqiqj (4)

Если бы в форме уравнения (4) отсутствовали перекрёстные произведения qiqj, то задачу можно было решить при помощи уравнения Ньютона

d/dt (¶T/¶q2i) + ¶U/¶qi = 0, i= 1,2, …,3N. (5)

при использовании уравнений (3) и (4) уравнение, а так же положив bij=0 при i?j уравнение (5) примет вид

q0i + biiqi=0, (6)

решением которого является

qi=qi0sin((bii)?t + di), (7)

где qi0 и di соответственно постоянные амплитуды и фазы без учёта перекрёстных членов. Кроме того, bii в этой формуле соответствует K/m из уравнения движения для гармонического осциллятора.

Так как в общем случае эти уравнения не пригодны, то стоит заменить координаты qi на Qi при помощи соотношений

q1=?B1iQi,

q2=?B2iQi,

……………

qk=?BkiQi, (8)

где Qi называются нормальными координатами системы. При соответствующем подборе коэффициентов Bki выражения для потенциальной и кинетической энергии примут вид

T=?S (dQi/dt)2, (9)

U=?S liQi2, (10)

без перекрестных членов.

Подставив формулы (9) и (10) в уравнение Ньютона (5), решив его получим ответ в следующем виде

Qi =Qi0sin((li)?t + di), (11)

и частота равна

ni=(1/2p)(li)?, (12)

такое колебание называется нормальным колебанием. В общем случае для N-атомной нелинейной молекулы число нормальных колебаний равно 3N-6, а для линейной N-атомной молекулы 3N-5, т.к. у такой молекулы отсутствует вращательная степень свободы. Таким образом общая форма молекулярного колебания является суперпозицией 3N-6 (или 3N-5) нормальных колебаний, описываемых формулой (11).

Физический смысл нормальных колебаний заключается в следующем, в уравнении (8) положим Q1 ?0, Q2 =Q3 =Q4 =…=0, тогда из уравнения (11) следует, что

qk = Bk1Q1= Bk1Q10sin((l1)?t + d1)=Akisin((l1)?t + d1). (13)

Это соотношение справедливо для всех k. Из уравнения (13) следует, что при нормальном колебании все ядра совершают движение в одной и той же фазе и с одинаковой частотой. Комбинируя уравнения (13) с (5) получим

-lAk + ?bkjAj =0. (14)

Это уравнение представляет собой систему уравнений первого порядка относительно А. Чтобы все А имели ненулевые значения, должно выполнятся условие

?b - lE ?=0, (15)

где b – матрица коэффициентов из уравнения (4), а Е – единичная матрица. Порядок этого векового уравнения равен числу нормальных колебаний. Решение данной системы представляет собой суперпозицию всех нормальных координат и имеет вид

qk = ?BklQl0sin((l1)?t + d1) (суммирование производится от 1 до l(эль)). (16)

Запишем волновое уравнение Шредингера для системы в нормальных координатах, получим

?(¶2yn/¶Qi2) + (8p2/h2)(E - ??liQi2)yn = 0, (17)

где Е – энергия системы, yn – волновая функция системы из N атомов.

Разделение переменных можно произвести исходя из подстановки

yn =y1(Q1) y2(Q2) ………… (18)

Подставив (18) в (17) получим

2yi/¶Qi2) + (8p2/h2)(Ei - ??liQi2)yi = 0, (19)

т.к.

Е = Е1 + Е2 + ….,

а

Еi = hni (ui +1/2),

ni = (1/2p)li?. (20)

Как указывалось выше, частота нормального колебания определяется кинетической и потенциальной энергией системы. Кинетическая энергия определяется геометрическим расположением отдельных молекулы системы и их массой. Потенциальная же энергия характеризует взаимодействие между отдельными атомами и записывается в виде функции силовых постоянных. Знание потенциальной энергии позволяет получить достаточную информацию о природе сил, действующих между атомами. Это возможно лишь при наличии силовых постоянных, полученных из наблюдаемых частот. Эту задачу решают вычислением частот в предположении ряда соответствующих силовых постоянных – прямая колебательная задача. Если между вычисленными и наблюдаемыми частотами имеется удовлетворительная корреляция, то соответствующий ряд силовых постоянных рассматривают как представление потенциальной энергии исследуемой системы.

Для вычисления частот колебаний нужно, прежде всего, выразить потенциальную и кинетическую энергии через какие-либо общие координаты, таковыми являются внутренние координаты. Они характеризуют изменения межатомных расстояний и валентных углов, тем самым силовые постоянные приобретают более ясный физический смысл, чем при использовании прямоугольных координат, т.к. эти силовые постоянные являются характеристиками изменений валентных угла и связи. В набор внутренних координат не входят координаты, описывающие поступательное и вращательное движения молекулы как целого. Потенциальная энергия в системе внутренних координат имеет вид

2U=R*FR, (21)

где R – матрица столбец внутренних координат, R* - транспонированная матрица и F – матрица, элементами которой являются силовые постоянные.

Кинетическая энергия в новой системе координат будет иметь вид

2Т = R*G-1R, (22)

где G – матрица, которая определяется следующим образом

G= BM-1B*, (23)

здесь M-1 – диагональная матрица, составленная из элементов mi, где mi – величина, обратная массе i-того атома. Матрица В определяется как

R=BX, (24)

где R и X – столбцовые матрицы, элементами которых являются соответственно внутренние и декартовы координаты атомов. Вековое уравнение в системе внутренних координат примет вид

?GU - El ?=0, (25)

где Е – единичная матрица, а l связано с волновым числом u соотношением l = 4p2с2u2.

Окончательный вид расчётной спектроскопической задачи в приближении малых колебаний сводится к решению уравнения [1-3, 13,33-36]:

(TF - L)L=0 (26)

T – матрица кинетических коэффициентов (кинетической энергии),

F– матрица силовых постоянных (потенциальной энергии),

L – диагональная матрица квадратов частот колебаний,

L – матрица форм нормальных колебаний (матрица преобразования внутренних координат к нормальным), в которых выполняется соотношение:

L*TL=E; L*FL=L [1-3], (27)

а матрица L определяется из соотношения

R=LQ, (28)

где R и Q – столбовые матрицы, элементами которых являются соответственно внутренние координаты и нормальные координаты.

Решение прямой колебательной задачи (26) может быть представлено различными способами. Обычный способ представления форм колебаний в виде изменения длин связей и углов [1,2] очень громоздок и может привести к ошибочному отнесению линий [36]. Более эффективным при интерпретации спектров является расчёт распределения потенциальной энергии колебаний (РПЭ) по внутренним координатам [37]. Согласно [38], РПЭ может также служить критерием степени характеристичности колебаний.

Для известных матриц T и F решение уравнения (27) (расчёт частот и форм нормальных колебаний – прямая колебательная задача) находится однозначно и является единственным, матрица кинетической энергии T в импульсном представлении при заданной геометрической конфигурации молекулы вычисляется точно. Матрица потенциальной энергии F может быть получена в результате квантово-химических расчётов. Однако такие расчёты требуют значительного машинного времен, памяти и реально могут использоваться для молекул с небольшим числом атомов. Более прост и доступен способ, основанный на аддитивности (квазиаддитивности) силовых и электрооптических постоянных молекул с одинаковыми структурными элементами. В обоих случаях полученные расчётные частоты, как правило, значительно отличаются от экспериментальных. В связи с этим, возникает задача нахождения (уточнения) силовых и электрооптических постоянных по экспериментальным частотам и интенсивностям (обратная спектральная задача – ОСЗ). Способы решения ОСЗ рассматриваются в [1-3]. В отличие от прямой задачи, ОСЗ может не иметь единственного решения. Такая задача является математически не корректной из-за чувствительности результатов к заданию экспериментальных данных, большого числа искомых переменных и плохой обусловленности решаемых уравнений. Для постановки ОСЗ в математически определённой форме, кроме частот и интенсивностей колебаний, необходимо привлечение дополнительных экспериментальных данных: колебательные спектры изотопных разновидностей молекул, изомеров, ближайших членов гомологического ряда, средних амплитуд колебаний и др. [1-5, 39-43,17].

Приближение центральных сил предполагает, что силы, удерживающие атомы в равновесии, зависят от расстояния между атомами. Эта модель не является удовлетворительной при расчёте деформационных колебаний молекул. Приближение валентных сил ближе к химическим представлениям о межатомных силах. В этом приближении рассматриваются силы, которые связаны с изменением длин связей, валентных, линейных, и “межплоскостных” углов в молекулах. Приближение Юри-Бредли включает валентные силы и дополнительные взаимодействия, соответствующие центральным силам между несвязанными атомами. Введение таких дополнительных сил (центральных сил) позволяет учесть функциональную зависимость диагональных и недиагональных силовых постоянных. Однако, как отмечено в [43], модель Юри-Бредли не несёт в себе глубокого физического содержания. В модели обобщённых валентных сил, кроме силовых постоянных валентно-силового поля, вводят недиагональные силовые постоянные взаимодействия валентных координат. Это приближение является наиболее распространённым и близким по смыслу к химическим представлениям о межатомных силах.

В настоящее время в литературе известно несколько способов представления результатов колебательных спектров. В большинстве расчетных работ степень участия естественных координат в нормальном колебании определяют по амплитудам их изменений [1,2,39,40]. Однако, представление форм колебаний в виде изменений длин связей и углов (или изменений декартовых координат атомов) очень громоздко и недостаточно наглядно. Кроме этого, на основе сравнения только амплитуд колебаний часто невозможно определить, является ли данное колебание в большей степени валентным или деформационным. Как показано в [43], этот подход может привести к ошибочной интерпретации спектров.

Более эффективным критерием при отнесении частот к определённым колебаниям внутренних координат является расчёт распределения потенциальной энергии (РПЭ) [43,44]. Однако, расчёт РПЭ достаточно корректен только для приближения валентно-силового поля (или центрального), в котором отсутствуют недиагональные силовые постоянные [44] или для приближения Юри-Бредли [45].

В приближении обобщённого валентно-силового поля потенциальная энергия нормального колебания n выражается в виде:

Un=1/2SKiiqni2 + 1/2SKiiqniqnj = SUnii + SUnij (29)

При расчёте РПЭ в этом приближении возникают трудности, связанные с учётом недиагональных составляющих матрицы потенциальной энергии колебаний Unij. В [41,42] при расчёте РПЭ в приближении ОВСП результаты приводятся в матричном виде, что очень неудобно из-за громоздкости данных. В [38,46] используется другой подход – не учитываются недиагональные составляющие Unij, если они относятся к разным группам естественных координат, что необоснованно в случае значительных величин недиагональных составляющих, из-за отсутствия нормировки РПЭ на 100%. В [45] используется способ описания РПЭ нормальных колебаний матрицей-столбцом с элементами:

[РПЭ]nj=(SKijqniqnj)/ln=(SUnij)/ln (30)

(нормировка на собственные числа ln). Хотя такое описание и является удобным (нормировка на 100%), по мнению авторов [45], остаётся условным в отношении учёта недиагональных взаимодействий.

Отметим, что расчёт РПЭ колебаний может использоваться для оценки степени характеристичности колебаний [38] (согласно [38] колебание n можно считать достаточно характеристичным для i-й внутренней координаты, если [РПЭ]ni ?80%). Разработанные в [40] количественные критерии характеристичности колебаний по частоте и форме не получили практического применения, т.к. основаны на сравнении частот, форм колебаний, силовых постоянных молекул в целом и в её отдельных фрагментах, а для большинства молекул их фрагменты в свободном состоянии не существуют. С этой точки зрения оценка характеристичности по РПЭ колебаний имеет несомненное преимущество.

1.4.2. Поляризованные линии в КР спектрах.

Рассмотрим теперь некоторые особенности спектроскопии комбинационного рассеяния. Известно, что линии комбинационного рассеяния обычно поляризованы, и степень поляризации зависит от симметрии нормального колебания. Предположим, что падающее излучение (естественный свет) проходит в направлении у, а рассеянное излучение наблюдается в направлении х. Если, используя анализатор, разложить рассеянное излучения на компоненты у(||) и z(^), то отношение интенсивностей в этих двух направлениях

rn=I??(y)/I^(z) (31)

называется степенью деполяризации.

Для нормального колебания (соответствующего нормальной координате Qa) rn выражается следующим образом:

rn= I??/ I^ = 6b2/(45a2 + 7b2), (32)

где

a=1/3[(¶axx/¶Qa)0 + [(¶ayy/¶Qa)0 + [(¶azz/¶Qa)0],

b2=1/2[((¶axx/¶Qa) - (¶ayy/¶Qa))02 + ((¶ayy/¶Qa) - (¶azz/¶Qa))02 + ((¶azz/¶Qa)-(¶axx/¶Qa))02 + 6{(¶axx/¶Qa)02 + [(¶ayy/¶Qa)02 + [(¶azz/¶Qa)02 }],

a равняется нулю в случае всех колебаний, не являющихся полносимметричными. Это правило выполняется для молекул как имеющих, так и не имеющих вырожденные колебания [17]. Таким образом, для всех колебаний, которые не являются полносимметричными, rn = 6/7 = 0,857. Соответствующие линии комбинационного рассеяния называют деполяризованными. С другой стороны, для полносимметричных колебаний a не равняется нулю. Тогда rn лежит в интервале 0< rn<6/7, и соответствующие линии комбинационного рассеяния называют поляризованными.

В мире существует острая проблема, связанная с утилизацией отработанного топлива ядерных реакторов АЭС. В отработанном топливе присутствуют различные нестабильные изотопы, но нас интересует изотоп 107Pd (b активен с периодом полураспада 6,5*106 лет). В связи с этим существует прикладная задача по выделению данного изотопа из отработанного топлива для дальнейшего использования в микроэлектронике, но для этого необходимо перевести Pd в летучую комплексную форму. В качестве таких летучих форм можно использовать бета-дикетонаты.

Как известно, энергия связи Pd–O колеблется от 80 кДж\моль до 150 кДж\моль в зависимости от заместителей в хелатном комплексе, а энергия связи С–О порядка 400 кДж\моль. Это позволит воздействовать высококогерентным излучением на частоту соответствующую максимальному значению вклада ns(Pd-O) в РПЭ, что, возможно, приведёт к селективному мономолекулярному распаду по связи Pd-O.












2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

2.1 Синтез и очистка b-дикетонатов палладия (II).

2.1.1. Исходные реагенты.

Тетрахлорпалладат калия (K2PdCl4) Реактив марки х.ч.

Перхлорат ртути (HgO) Реактив марки х.ч.

Едкий кали (КОН) Реактив марки х.ч.

Пивалоилметанол (НDPM) Реактив марки х.ч.

Бензоилацетон (НBA) Реактив марки х.ч.

Гексафторацетилацетон (НHFA) Реактив марки х.ч.

Ацетилацетон (НАА) Реактив марки х.ч.

Этиловый спирт (EtOH) Реактив марки х.ч.


2.1.2. Методика синтеза.

PdL2 (L= aa, dpm, dbm, hfa) получали из K2PdCl4 (1 ммоль 0.326 г) соответственно через стадию образования аква-иона данного металла в растворе хлорной кислоты. HgO (2 ммоль, 0.432) отдельно растворяли в 20 мл 0.5 N HClO4 и по каплям добавляли в раствор исходной соли. Полученный раствор [Pd(H2O)4]2+ (V = 25 мл) нагревали в течении 2 часов при t= 50 – 600C, затем охлаждали. Смесь выпавших осадков Hg2+, КClO4 отфильтровывали на фильтре и промывали ледяной дистиллированной водой. Объём полученного раствора аква-иона доводили дистиллированной водой до 50 мл, затем нагревали его при перемешивании ещё 0.5 часа при t=50 – 600C. Далее раствор [Pd(H2O)4]2+ нейтролизовывали 3%-ым свежеприготовленным раствором КОН до рН = 2-3 при интенсивном перемешивании. Затем в раствор аква-иона металла добавляли по каплям раствор калиевой соли лиганда (2.5 ммоля) в 10 мл этилового спирта. Выпавший осадок b-дикетоната палладия (II) отфильтровывали, растворяли в бензоле. Комплекс, выделенный из бензола, очищали сублимацией в вакууме при Р = 0.01 torr. Выходы сублимированных продуктов в расчёте на K2PdCl4 составляли » 70%.

2.1.3. Метод очистки.

Все синтезированные b-дикетонаты палладия (II) были очищены методом зонной сублимации в вакуумной градиентной печи. Для этого в реактор (сублиматор), представляющий собой стеклянную ампулу со шлифом длиной 80-90 см, помещали кварцевую лодочку с веществом. С помощью системы шлифов через охлаждаемую жидким азотом ловушку сублиматор присоединяли к вакуумной системе. Подготовленный таким образом сублиматор помещали в градиентную печь, где изменение температуры по длине печи обеспечивалось внешней изоляцией и разной частотой витков нагревателя. Процесс сублимации проводили при 0.01 torr. Температуры испарения b-дикетонатов палладия (II) выбирались на основе данных высокотемпературной масс-спектроскопии и данных по температурной зависимости давления пара b-дикетонатов палладия (II) [11]. Плавное изменение температуры по длине печи и достаточная длина сублиматора позволили отделить зону кристаллизации искомого вещества от зон испарения и конденсации летучих примесей. Основную зону кристаллизации вырезали, и собранное вещество при необходимости подвергали повторной сублимации.

2.2. Аппаратура и методы исследования.

2.2.1. Регистрация колебательных спектров b-дикетонатов палладия (II).

2.2.1.1. Спектры ИК-поглощения кристаллической фазы.

Спектры ИК-поглощения кристаллов b-дикетонатов палладия (II) в диапазоне 400-4000 см-1 были зарегистрированы на приборе «Specord IR-75» (таблетки KBr 150:1, разрешение прибора 3 см-1) и в диапазоне 50-400 см-1 на приборе IFS-66 «Bruker» (таблетки KBr 150:1, разрешение прибора 3 см-1) в лаборатории ИОХ СО РАН. Экспериментальные спектры приведены на рисунке 2.

2.2.1.2. Спектры КР кристаллической фазы b-дикетонатов палладия (II).

Спектры КР кристаллов хелатов были получены на приборе Triplemate, SPEX, снабженным CCD детектором и микроскопом для регистрации спектров в геометрии обратного рассеяния с возбуждением линией 514 нм аргонового лазера в лаборатории ИНХ СО РАН.

Спектральные данные представлены на рисунках 3-4.

2.2.1.3. Спектры КР растворов b-дикетонатов палладия (II) бензоле.

Поляризованные спектры КР растворов хелатов в бензоле были получены на приборе Triplemate, SPEX, снабженным CCD детектором и микроскопом для регистрации спектров в геометрии обратного рассеяния с возбуждением линией 514 нм аргонового лазера в лаборатории ИНХ СО РАН. Для этого специальный капилляр длиной около 2 см заполняли заранее приготовленным 10-2 М раствором соответствующего хелата и помещали его в КР спектрометр. Плоскость поляризации рассеянного света задавалась поляроидом, помещённым во входном канале спектрометра. Экспериментальные спектры представлены на рисунках 5-6.

2.2.1.4. КР спектры газовой фазы b-дикетонатов палладия (II).

Для регистрации КР спектров газовой фазы была разработана приставка к КР спектрометру Triplemate, SPEX. Спектры регистрировались в геометрии 90о при возбуждении линией 418 нм аргонового лазера в лаборатории ИНХ СО РАН. Приставка и оптический путь луча лазера схематично изображены на рисунке 7.

В оптическую кювету (V = 6 см3), изготовленную из кварца, помещалась навеска сублимированного исследуемого b-дикетоната палладия (II). Экспериментально было установлено, что для регистрации КР спектра с достаточной интенсивностью минимальная концентрация раствора b-дикетоната должна составлять не ниже 10-2 моль/л. Необходимая навеска хелата рассчитывалась по уравнению состояния идеального газа Менделеева-Клайперона

m = (P*V*M)/(R*T), (33)

где P – давление насыщенного пара хелата в атм, С – концентрация в моль/л, R – универсальная газовая постоянная 0.082 (л*атм)/(моль*К), m – масса в г, V – объём газовой кюветы в см3, М – молекулярная масса комплекса в г/моль, Т – температура в градусах Кельвина. Значение температуры, при которой давление пара хелата соответствовало бы концентрации 10-2 моль/л брали из данных о зависимости давления пара испытуемого хелата от температуры [11].


Рис. 6. Схема съёмки КР спектра газовой фазы: 1. нагревательный элемент; 2. блок регулировки температурного режима нагревательного элемента; 3. кварцевая газовая кювета;4. газовая фаза исследуемого вещества; 5. приёмник выходного излучения и аналитический блок.

Кювету с веществом вакуумировали до Р = 10-4 атм с целью удаления кислорода воздуха и паров воды. Далее запаивали её и помещали в печь с последующим нагреванием до заданной температуры и регистрацией КР спектра. Экспериментальные спектры представлены на рисунке 8.

2.2.2. Рентгеноструктурные данные.

Рентгеноструктурные данные для b-дикетонатов палладия были взяты из CSDB (Cambridge Structure Data Base).

2.2.3. Анализ нормальных колебаний b-дикетонатов палладия.

Расчёт нормальных колебаний b-дикетонатов палладия (II) проведён с использованием программ LEV rev. 1.05 [1] в приближении обобщенного валентно-силового поля.

Расчёт колебаний проводили с использованием данных из работы [35] и собственных экспериментальных данных:

  1. Поляризованные спектры КР растворов b-дикетонатов палладия в бензоле.

  2. Спектры КР кристаллической фазы хелатных комплексов палладия.

  3. Спектры КР газовой фазы хелатов Pd(hfa)2, Pd(dpm)2 (зарегистрированы впервые).

  4. Спектры ИК-поглощения кристаллической фазы хелатов (в дальнем и среднем ИК диапазоне).

2.2.3.1. Методика расчёта колебательных спектров и представление результатов.

В N-атомных системах все ядра совершают свои собственные гармонические колебания, любое из этих колебаний, как известно, можно представить в виде суперпозиции нормальных колебаний, которые выглядят следующим образом:

Qi =Qi0sin((li)?t + di), (34)

и частота равна

ni=(1/2p)(li)?, (35)

такое колебание называется нормальным колебанием, где Qi называются нормальными координатами системы. В общем случае для N-атомной нелинейной молекулы число нормальных колебаний равно 3N-6, а для линейной N-атомной молекулы 3N-5, т.к. у такой молекулы отсутствует вращательная степень свободы. Таким образом, общая форма молекулярного колебания является суперпозицией 3N-6 (или 3N-5) нормальных колебаний, описываемых формулой выше приведённой формулой. Физический смысл нормальных колебаний заключается в следующем, следует, что при нормальном колебании все ядра совершают движение в одной и той же фазе и с одинаковой частотой.

Рис.1. Спектры ИК-поглощения b-дикетонатов палладия (II) в диапазоне 400-4000 см-1.


Рис.2. Спектры КР кристаллической фазы b-дикетонатов палладия (II).




















Рис.3. Спектры КР кристаллической фазы b-дикетонатов палладия (II).








Рис.4. КР спектры растворов b-дикетонатов палладия (II) в бензоле.



Рис.5. КР спектры растворов b-дикетонатов палладия (II) в бензоле.



Как указывалось выше, частота нормального колебания определяется кинетической и потенциальной энергией системы. Кинетическая энергия определяется геометрическим расположением отдельных молекулы системы и их массой. Потенциальная же энергия характеризует взаимодействие между отдельными атомами и записывается в виде функции силовых постоянных. Знание потенциальной энергии позволяет получить достаточную информацию о природе сил, действующих между атомами. Это возможно лишь при наличии силовых постоянных, полученных из наблюдаемых частот. Эту задачу решают вычислением частот в предположении ряда соответствующих силовых постоянных – прямая колебательная задача. Если между вычисленными и наблюдаемыми частотами имеется удовлетворительная корреляция, то соответствующий ряд силовых постоянных рассматривают как представление потенциальной энергии исследуемой системы. Для вычисления частот колебаний нужно, прежде всего, выразить потенциальную и кинетическую энергии через какие-либо общие координаты, таковыми являются внутренние координаты.

Они характеризуют изменения межатомных расстояний и валентных углов, тем самым силовые постоянные приобретают более ясный физический смысл, чем при использовании прямоугольных координат, т.к. эти силовые постоянные являются характеристиками изменений валентных угла и связи. В набор внутренних координат не входят координаты, описывающие поступательное и вращательное движения молекулы как целого.

При уточнении силовых постоянных по экспериментальным частотам (обратная спектральная задача – ОСЗ). В отличие от прямой задачи, ОСЗ может не иметь единственного решения. Такая задача является математически не корректной из-за чувствительности результатов к заданию экспериментальных данных, большого числа искомых переменных и плохой обусловленности решаемых уравнений. При постановке ОСЗ в математически определённой форме, кроме частот колебаний, привлекались дополнительные экспериментальных данные: колебательные спектры ближайших членов гомологического ряда.

В приближении обобщённых валентных сил, кроме силовых постоянных валентно-силового поля, вводят недиагональные силовые постоянные взаимодействия валентных координат. Это приближение является наиболее распространённым и близким по смыслу к химическим представлениям о межатомных силах.

В приближении обобщённого валентно-силового поля потенциальная энергия нормального колебания n выражается в виде:

Un=1/2SKiiqni2 + 1/2SKiiqniqnj = SUnii + SUnij (36)

РПЭ имеет выражение:

[РПЭ]nj=(SKijqniqnj)/ln=(SUnij)/ln (37)

(нормировка на собственные числа ln).



Рис.7. КР спектры газовой фазы b-дикетонатов палладия (II).




2.2.4. Получение и исследование слоёв b-дикетонатов палладия.

2.2.4.1. Нанесение слоёв b-дикетонатов палладия.

Для получения плёнок b-дикетонатов палладия использовался метод испарения исходного соединения из разработанного молекулярного источника паров. В качестве источника паров служила разработанная камера из стали с эффузионным отверстием. Диаметр отверстия составлял 0,030 см. Эффузионная камера помещалась в нагревательный блок из нержавеющей стали. Источник был смонтирован на стандартном держателе универсального вакуумного поста ВУП-5М. Температуру испарителя с помощью терморегулятора ПИТ-3 и контролировали хромель-алюмелевой термопарой. Температура подложки при напылении оставалась комнатной (» 180С). Расстояния от эффузионного отверстия до подложки рассчитаны с учётом углового распределения интенсивности молекулярного пучка формируемого эффузионным отверстием, для получения равномерных в пределах допусков плёнок (на уровне 5%) на подложках диаметром » 20 мм. Напыление производили в вакууме при P = 10-6 torr. Схема установки для получения пеленок представлена на

рисунке 9.

2.2.4.2. Аппаратура и методы исследования слоёв b-дикетонатов.

РФА полученных плёнок проводили на дифрактометре ДРОН-3М на фильтрованном CuKa-излучении.

Ориентацию молекул в плёнках определяли методом комбинационного рассеяния света по разработанным в ИНХ СО РАН методикам, описанным в [31,32].

Рис.8.

1-Система управления

2- Подложка

3-Магнитные и электрические поля

4-Терморегулятор подложки

5-Модулятор

6-Терморегулятор испарителя

7-Испаритель

8-Вакуумная камера

9-Вакуумные клапаны

10-Диффузионный насос

11-Форвакуумный насос




3.РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ.

3.1. Анализ внутримолекулярных колебаний.

Детальное исследование колебательных спектров и расчёт частот и форм нормальных колебаний бета-дикетонатов с различными лигандными заместителями проведено на примере комплексов палладия (II). Выбор в качестве заместителя радикалов СН3, СF3, С(СН3)3, С6Н5 обусловлен тем, что позволяет охватывать весь спектр свойств как комплексов (летучесть, термическая устойчивость и др.), так и лигандных заместителей (значительное изменение массы, донорно-акцепторных свойств, способности к p-сопряжению).

Колебательные спектры содержат информацию о молекулярной и кристаллической структуре (в топологическом смысле), взаимодействии атомов в молекуле, различных химических эффектах, как, например, степени ароматизации циклических фрагментов молекулы, и многое другое. Для извлечения интересующей информации, прежде всего необходимо как можно более корректная интерпретация колебательного спектра, ИК или КР, то есть строгое отнесение всех наблюдаемых в спектре колебательных мод. При исследовании пленок метод спектроскопии КР является наиболее привлекательным, так как позволяет не только получать спектры пленок на любых подложках, но и проводить поляризационные измерения, необходимые для установления типов симметрии колебаний и извлечения структурной информации. Для таких молекул как b-дикетонаты палладия(II), представляющих собой сложную сопряженную систему, невозможно сделать правильное отнесение линий, основываясь только на концепции характеристических частот. Только корректный расчет нормальных колебаний, основанный на экспериментальных данных, позволяет решить поставленную задачу.

Анализ колебательных спектров и расчет частот и форм нормальных колебаний проведен для ряда дикетонатов указанных выше в приближении обобщенного валентно-силового поля. С целью упрощения расчётов соединений с лигандными заместителями СН3, СF3, С(СН3)3, группы атомов СНn и СFn рассматривали как один псевдоатом с массой mc+nmH и mc+nmF (приближение точечных масс). Структурные параметры из [6-10] для каждого комплекса усреднялись таким образом, чтобы идеализированная молекула имела группу симметрии D2h. Молекулы комплексов характеризуются следующими колебательными представлениями:

Г(Pd(dbm)2) = (28Ag + 12B3g + 27B1g + 14B2g) (КР) + (15B1u + 28B2u + 28B3u)(ИК) + 13Au;

Г(Pd(aa)2) = (14Ag + 5B3g + 13B1g + 7B2g)(КР) + (8B1u + 14B2u + 14B3u)(ИК) + 6Au;

Г(Pd(dpm)2) = (32Ag + 16B2g + 31B1g + 14B3g)(КР) + (17B1u + 32B2u + 32B3u)(ИК) + 15Au;

Г(Pd(hfa)2) =(14Ag + 5B3g + 13B1g + 7B2g)(КР) + (8B1u + 14B2u + 14B3u)(ИК) + 6Au.

Для комплексов бета-дикетонатов Pd(II) существенные изменения КР спектров при переходе из кристаллической фазы в раствор наблюдаются в области частот ниже 180 см-1 (смешанные деформационные и «внешние» колебания молекул в кристалле). В области «внутренних» колебаний (выше 180 см-1) спектры КР комплексов в различных фазах адекватны друг другу, как по интенсивности линий, так и по частоте колебаний. Отличия частот в спектрах в разных фазах составляют не более 3-5 см-1 (кроме колебаний хелатных заместителей и СНg, для которых отличие составляет до 10-15 см-1 [34]).

Таким образом, изменения частот колебаний (больше 3-5 см-1) в ряду по лигандным заместителям для бета-дикетонатов в кристаллической фазе связаны только с изменениями внутримолекулярных характеристик: геометрии молекулы, силовых постоянных.

Практически все колебания молекул имеют сложную форму. Преимущественным вкладом в колебания связей М-О, деформаций хелатного цикла и лигандных заместителей СH3, CF3, C(CH3)3, C6H5 характеризуется область спектров от 450 до 700 см-1.

Примерно с 700 – 1000 см-1 в колебательных спектрах бета-дикетонатов происходит увеличение участия связей СС, С—С, СО хелата. От 1200 до 1350 см-1 характеризуется в большей степени участием связей СС, СО в различных комбинациях. Неплоские колебания d(СНg) наблюдается в области частот 740 – 830 см-1, деформации d(СНg) в плоскости хелата – от 1100 до 1300 см-1.

Увеличение частот полносимметричных колебаний ns(M—O) для бета-дикетонатов палладия наблюдается в ряду лигандных заместителей СH33)36H53. (Изменение частот колебаний ns(M—O) не пропорционально изменению k(M—O), таблица 2, из-за кинематического влияния массы). С увеличением частот ns(M—O) в указанном ряду лигандных заместителей наблюдается уменьшение относительной интенсивности соответствующих линий в спектрах КР. (Высокой относительной интенсивностью характеризуются линии ns(M—O) в спектрах КР комплексов бета-дикетонатов с заместителями СH3 и C(CH3)3. В спектрах КР комплексов с заместителями CF3 и C6H5 линии ns(M—O) низкоинтенсивны).

Таблица 2.

Силовые постоянные (в 106 см-2), частоты колебаний ns(M—O).

Силовая постоянная

СH3

C(CH3)3

C6H5

CF3

k(M—O)

5,1

54,0

4,6

5,0

k(С—O)

13,9

12,9

11,5

14,6

k(СС)

9,8

9,5

10,8

5,3

k(С—С)

7,1

7,3

10

7,6

ns(M—O), см-1

463(47%)

514(26%)

583(16%)

610(50%)


3.2. Определение симметрии молекулярных колебаний в КР и ИК спектрах b-дикетонатов палладия.

Весь спектр КР кристаллов b-дикетонатов металлов можно разделить на две области: область внешних или кристаллических колебаний (ниже 180 см-1) и область внутримолекулярных колебаний (выше 180 см-1) [35].

Определение симметрии колебаний молекулы является необходимым шагом при расчете колебательного спектра соединения. Симметрию внутримолекулярных колебаний определяли по поляризованным спектрам растворов хелатов в бензоле рисунки 10-11, а также на основе сравнения с результатами, полученными для бета-дикетонатов меди в работе [35]. Сравнительные данные приведены в таблице 3. Симметрию ИК полос определяли, исходя из данных работы [35], а также результатов расчета колебательных спектров.

3.3. Расчет спектров КР и ИК b-дикетонатов палладия.

Для корректного расчета колебательного спектра необходимо знать типы симметрии всех наблюдаемых в спектре линий и как можно более полная информация о формах колебаний. Последняя извлекается из измерений сдвигов частот колебаний при изотопозамещении атомов в молекуле.

Таблица3.

Сравнение экспериментальных частот (в см-1) b-дикетонатов меди и палладия активных в ИК и КР спектрах.

КР M(dbm)2

ИК M(dbm)2

КР M(dpm)2

ИК M(dpm)2

Cu

Pd

Сим

Cu

Pd

Сим

Cu

Pd

Сим

Cu

Pd

Сим

201

192

B2g

243

252

B2u

261

250

Ag

200

-

B2u

224

230

Ag

280

276

B1u

348

345

B3g

236

230

B1u

260

254

B1g

360

365

B3u

400

398

B1g

276

279

B1u

407

418

Ag

447

417

B3u

427

-

B3g

287

-

B2u

-

437

?

465

469

B1u

440

449

Ag

320

336

B3u

464

466

Ag

550

551

B1u

513

514

Ag

396

401

B2u

570

542

Ag

573

583

B2u

650

658

B1g

436

438

B1u

-

583

?

657

614

B2u

738

722

B3g

457

-

B2u

621

618

?

697

681

B3u

834

827

B3g

493

-

B1u

673

663

?

710

706

B3u

938

928

936

Ag

515

516

B2u

700

688

B3g

749

747

B3u

974

961

Ag

642

657

B1u

-

705

?

793

783

B2u

1013

993

?

-

680

?

753

748

B3g

847

838

B1u

1035

1027

?

768

763

B3u

794

785

B2g

935

929

B2u

1156

1146

Ag

790

794

B2u

-

804

?

948

947

B1u

1183

1184

B1g

792


B3u

949

945

Ag

1000

999

B1u

1209

1201

?

873

878

?

1002

1001 999

Ag

1028

1023

B2u

1241

1232

B2g

935

936

B1u

1026

1023

B1g

1072

1075

B1u

1257

1247

B3g

962

962

B1u

1072

1062

Ag

1131

1132

B2u

1301

1281

B3g

1022

1026

?

1131

1133

B1g

1152

1152

?

1377

1362

Ag

1148

1144

B2u

1152

1151

?

1168

1166

?

1393

1394

?

1177

1185

B2u

1170

1166

?

1186

1186

?

1453

1446

?

1227

1228

Au

1186

1187

?

1235

1233

B2u

1457

1462

?

1247

1246

B3u

1235

1232

Ag

1295

1303

B2u

1471

-

?

1290

-

B2u

1296

1290 1301

B1g

1317

1311

B1u

1489

1492

B1g

1358

1359

?

1320

1313

Ag

1405

1380

B2u

1511

1528

?

1388

1380

B1u

1380

1392

B1g

1457

1439

B2u

1550

1551

Ag

1405

-

?

1444

1442 1451

Ag

1485

1483

B2u

1572

1561

B1g

1443

1444

?

1494

1493

Ag

1537

1524

B2u

1584

-

?

1457

1458

?

1528

1520

Ag

1595

1534

B2u

1605

-

?

1502

1496

B2u


1541

?

1602

1588

?




1537

1528

?

1596

1597

B1g







1552

1540

B1u










1568

1555

?










1593

1589

B2u

КР M(aa)2

ИК M(aa)2

КР M(hfa)2

ИК M(hfa)2

Cu

Pd

Сим

Cu

Pd

Сим

Cu

Pd

Сим

Cu

Pd

Сим

209

200

Ag

217

216

B1u

264

264

Ag

266

259

B2u

-

273

B1g

-

263

B2u

276

-

B2g

325

347

B3u

410

413

B1g

291

295

B2u

363

363

Ag

359

365

B2u

450

463

Ag

445

-

B2u

520

535

B3g

530

535

B3u

564

556

B2g

457

464

B1u

528

-

B2g

599

578

B2u

690

702

Ag

590

-

B1u

606

610

Ag

682

662

B1u

781

780

B3g

615

441

B2u

743

725

B1g

720

718

B3u

941

937

Ag

655

660

B3u

753

754

B3g

753

754

B3u

980

-

Ag

685

678

B1u

-

826

?

746

-

B2u

1023

1022

B1g

787

785

B3u

963

952

Ag

768

788

B2u

1190

1198

B1g

940

937

B1u

1112

1112

Ag

808

815

B1u

1280

1276

Ag

1026

1022

B2u

1156

1153

B1g

1106

1105

B2u

1370

1366

Ag

1191

1198

B2u

1174

-

?

1149

1152

B1u

-

1524

Ag

1280

1272

B1u

1228

1231

B1g

1258

1261

B2u

1582

1572

B1g

1357

1356

B1u

1260

1253

B1g

1355

1342

B1u




1415

1395

B2u

1366

1346

Ag

1475

1436

B2u




1447

-

B3u

1413

1435

?

1537

1532

?




1533

1525

B2u

1483

-

B1g

1565

1558

B2u




1553

1548

B1u

1553

1532

B1g

1613

1600

?




1583

1568

B1u

1575

1559

?

1647

1668

B1u







1661

1601

Ag




В данной работе не проводилось исследование изотопозамещенных аналогов, однако такое исследование было сделано для b-дикетонатов меди(II) в работе [35], на которую мы и опирались в данной работе. Замена центрального атома с меди на палладий не приводит к существенному изменению в колебательных спектрах в области частот в РПЭ которых вклад колебания ns(М—О) минимален либо отсутствует.

Экспериментальные частоты в области ниже 180 cм-1 не включались в расчет из-за смешивания внутренних и внешних колебаний в этой области.

В качестве нулевого приближения силовых постоянных использовались данные из работы [35], см. таблицу 4. Набор диагональных силовых постоянных полученных в результате расчёта приведён в таблице 5. Экспериментальные и рассчитанные частоты, распределение потенциальной энергии (РПЭ) между группами эквивалентных координат представлены в таблице 6. Практически все колебания молекул b-дикетонатов палладия имеют сложную форму. Максимальный вклад отдельных групп естественных координат в распределение потенциальной энергии колебаний составляет не более 60-70 %.

3.4. Получение и исследование пленок бета-дикетонатов палладия(II).

Для оптимизации режима нанесения молекулярных слоёв из b-дикетонатов палладия (II) необходимо знание давления насыщенного пара в широком температурном интервале.

Данные по температурной зависимости давления насыщенного пара b-дикетонатов палладия (II) приведены на рисунке 13 и представлены в виде

lg(P/torr)=B–A*1000/T, (38)

где А = DН0Т(ккалl/моль )/R и В = DS0T(кал/(K*моль))/R:

Pd(dbm)2 (сублимация) устойчив в очень узком интервале температур

Pd(aa)2 (сублимация) lgP = 12.29 – 6795.6/T

Pd(dpm)2 (сублимация) lgP = 12.09 – 6550.1/T

Pd(hfa)2) (сублимация) lgP = 9.75 – 4419.0/T

Рис.13. Зависимость логарифма давления насыщенного пара от обратной температуры для комплексов: Pd(hfa)2 (1), Pd(dpm)2 (2), Pd(aa)2 (3).





Рис.10. Поляризованные спектры растворов b-дикетонатов палладия в бензоле: (ii) – в параллельных поляризациях падающего и рассеянного света, (ij) – в перекрестных поляризациях, p – поляризованная линия, dp – деполяризованная линия.



Рис.11. Поляризованные спектры растворов b-дикетонатов палладия в бензоле: (ii) – в параллельных поляризациях падающего и рассеянного света, (ij) – в перекрестных поляризациях, p – поляризованная линия, dp – деполяризованная линия.


Таблица 4.

Значения силовых постоянных, использованные в качестве нулевого приближения (в 106 см-2).

Силовая постоянная

Cu(aa)2

Cu(dpm)2

Cu(hfa)2

Cu(dbm)2

К1

4.5

4.3

4.8

5.08

H12

1.17

1.02

0.97

0.97

H17

-0.55

-0.85

-0.60

-0.58

H18

0.40

0.30

0.45

1.04

H114

1.15

1.05

1.10

0.75

H115

-0.56

-0.89

-0.52

1.35

H116

-0.17

0.287

-0.20

1.08

H130

0.77

0.67

0.80

0.82

A11,15

0.90

0.90

0.90

0.98

A11,2

0.76

1.05

1.05

0.68

A11,16

0.30

0.30

0.30

0.40

A12,3

-0.07

0.53

-0.25

-0.45

A12,7

-0.20

0.30

-0.13

-1.07

A114,15

-0.318

-0.446

-0.371

-0.45

A116,17

0.148

0.256

0.365

0.17

К2

12.75

12.95

12.25

11.90

H23

1.01

1.01

0.96

0.65

H27

0.45

0.22

-0.48

0.76

H29

-0.63

-0.68

-0.95

-0.48

A21,2

-0.28

-0.28

-0.28

-0.28

A22,3

0.76

0.76

0.76

0.76

A22,7

0.84

0.84

0.94

0.85

К3

7.0

7.1

6.3

7.75

A32,3

0.48

0.48

-0.22

0.38

A33,7

-0.20

0.0

-0.20

0.79

A32,7

-0.02

0.08

0.40

0.95

A33,4

0.50

0.515

0.97

0.79

H34

0.0

-0.30

0.05

0.0

К4

8.14

7.6

11.4

9.85

A43,4

0.67

0.515

1.30

0.40

H45

0.06

0.0

1.20

0.64

A44,5

0.30

0.55

1.80

0.70

A55,6

0.01

0.60

1.60

0.0

К7

10.60

10.76

10.30

9.22

H79

0.25

0.14

0.70

-0.27

H715

0.40

0.30

0.45

1.04

A72,3

-0.65

-0.65

-0.60

-0.65

A73,7

0.58

0.58

0.58

0.40

A72,7

0.80

0.80

0.85

0.80

A77,9

0.20

0.20

-0.75

0.0

A77,8

0.43

0.48

0.71

0.17

A78,9

-0.35

-0.40

0.12

0.13

К8

8.7

-

-

-

A87,8

0.173

-

-

-

A87,9

-0.02

-

-

-

К1,15

1.80

1.90

1.65

1.82

l1,151,2

0.55

0.55

0.60

0.35

К15,30

0.9

1.0

0.5

1.0

К1,2

1.5

1.5

1.5

1.7

l1,22,7

0.08

0.08

0.08

0.28

К2,3

1.27

1.27

1.27

1.37

l2,33,7

0.50

0.50

0.50

0.34

l2,39,10

-0.03

-0.03

-0.03

-0.18

l1,22,3

0.01

0.01

0.01

0.01

К3,7

1.50

1.50

1.50

1.95

l3,72,7

0.55

0.55

0.55

1.22

l3,78,9

-0.02

-0.02

-0.02

-0.02

К2,7

1.75

1.68

1.75

1.90

l2,77,9

-0.01

-0.054

-0.10

-0.225

l3,43,5

-0.09

-0.054

0.12

-0.134

l3,44,5

-0.08

-0.054

-0.20

0.45

К3,5

1.10

1.40

1.565

1.20

К7,8

0.89

1.04

0.95

0.89

l7,87,9

0.33

0.33

0.33

0.30

К7,9

1.20

1.20

1.20

1.20

l4,55,6

-0.12

-0.54

0.02

-0.23

К4,5

0.82

1.423

2.12

1.87

К5,6

0.315

1.423

2.28

0.92

A129,30

-0.018

0.046

-0.07

0.0

A110,14

0.05

0.363

-0.23

-1.07

A117,18

0.05

0.363

0.37

0.0

A125,29

0.05

-0.281

0.37

0.0

l7,89,10

-0.02

-0.02

-0.02

-0.02

r 32,7

0.50

0.50

0.50

0.50

r 87,8

0.45

0.43

0.438

0.39

r 27,3

0.60

0.60

0.60

0.45

r 73,2

0.63

0.63

0.68

0.68

К1,30

0.50

0.50

0.50

1.12

1,33w27,3

0.18

0.18

0.075

0.04

2,73w27,3

-0.12

-0.10

-0.12

-0.12

2,73w73,2

-0.12

-0.10

-0.12

-0.12

3,27w914,10

0.05

0.05

0.08

-0.10

3,27w87,9

0.20

0.22

0.29

0.196

3,27w27,3

-0.275

-0.275

-0.275

-0.245

x1,27,2

0.20

0.405

0.27

0.50

9,1414,15d1,27,2

0.05

-0.175

0.05

0.134

22,1716,17d1,27,2

0.05

0.175

0.05

0.03

29,3024,29d1,27,2

0.05

0.195

-0.15

-0.016

Силовая постоянная

Cu(dbm)2

Силовая постоянная

Cu(dbm)2

К6

10.8

H631

0.44

A66,31

0.47

A46,30

0.25

A431,30

-0.10

H632

-0.74

H633

0.22

К6,31

0.92

H47

0.65

H42

-0.10

H57

-0.05

H52

0.46

H46

-0.25

A44,31

1.20

A44,33

0.73

l4,54,33

-0.28

l33,325,6

-0.10

l4,335,6

0.065

Кi – силовая постоянная i связи;

Кij – силовая постоянная угла, образованного i и j связями;

Hij – силовая постоянная взаимодействия координаты растяжения i и j связей;

Ainm – силовая постоянная взаимодействия координаты растяжения i-й связи и изменения валентного угла, образованного n-ой и m-ой связями;

lijnm – силовая постоянная взаимодействия двух угловых координат с индексами с индексами связей n, m и i, j;

ri in – силовая постоянная координаты изменения угла между i связью плоскостью, проведённой через связи j и i (координата выхода связи из плоскости);

ci jm n – силовая постоянная координаты изменения двугранного угла между плоскостями, проведёнными через связи i, j и n,m;

njii m – силовая постоянная взаимодействия координаты связи i из плоскости j, m с координатой растяжения n-ой связи;

p njii m – то же для взаимодействия с координатой изменения угла n, p;

pqnjii m – то же для взаимодействия с координатой выхода n-й связи из плоскости p, q;

pdijnm, pqdijnm, qrpdijnm, drpqdijnm – силовая постоянная взаимодействия координаты изменения двугранного угла между плоскостями i, j и n,m с координатами соответственно растяжения связи, изменения угла, выхода связи из плоскости и изменения двугранного угла между плоскостями. Структурные схемы, нумерация атомов в b-дикетонатах меди (II) представлены на рис.12.

Рис. 12. Структурные схемы, нумерация атомов и связей b-дикетонатов меди (II) для R=H(ацетилацетонат–аа), = F (гексафторацетилацетонат – hfa), = CH3 (дипивалоилметанат – dpm) и дибензоилметанат (dbm).






Таблица 5.

Значения диагональных силовых постоянных полученных в результате расчёта

(в 106 см-2).

Pd(aa)2

Силовая постоянная

k

Силовая постоянная

k

PD1O2-PD1O2

5,1

O2PD1O3-O2PD1O3

2,2

O2C6-O2C6

13,9

O2PD1O4-O2PD1O4

0,8

C6C8-C6C8

9,8

PD1O2C6-PD1O2C6

1

C6CH9-C6CH9

7,1

O2C6C8-O2C6C8

2,1



O2C6CH9-O2C6CH9

0,8



C6C8C7-C6C8C7

1,1



C8C6CH9-C8C6CH9

1,5


Pd(dpm)2

Силовая постоянная

k

Силовая постоянная

k

PD1O2-PD1O2

4,0

O2PD1O3-O2PD1O3

3,0

O2C6-O2C6

12,9

O2PD1O4-O2PD1O4

1,9

C6C8-C6C8

9,5

PD1O2C6-PD1O2C6

1,2

C6C9-C6C9

7,3

O2C6C8-O2C6C8

2,0

C9CH16-C9CH16

6,5

O2C6C9-O2C6C9

1,2



C6C8C7-C6C8C7

2,1



C8C6C9-C8C6C9

1,7



C6C9CH16-C6C9CH16

1,5



C6C9CH17-C6C9CH17

1,3



CH16C9C17-CH16C9CH17

1,0



CH17C9CH18-CH17C9CH18

2,0





Pd(dbm)2

Силовая постоянная

k

Силовая постоянная

k

PD1O2-PD1O2

4,6

O2PD1O3-O2PD1O3

1,2

O2C4-O2C4

11,5

PD1O2C4-PD1O2C4

1,7

C4C6-C4C6

10,8

O2PD1O20-O2PD1O20

1,2

C4C7-C4C7

10

O2C4C6-O2C4C6

1,8

С7С8- С7С8

12,3

O2C4C7-O2C4C7

1,0



C4C6C5-C4C6C5

1,0



C6C4C7-C6C4C7

1,7



C4C7C8-C4C7C8

2,0



C4C7C9-C4C7C9

2,9



C8C7C9-C8C7C9

0,9


Pd(hfa)2

PD1O2-PD1O2

5,0

O2PD1O3-O2PD1O3

1,7

O2C4-O2C4

14,6

PD1O2С4- PD1O2С4

1,3

C4C6-C4C6

5,3

O2PD1O9-O2PD1O9

0,6

C4CF7-C4CF7

7,6

O2C4C6-O2C4C6

1,5



O2C4CF7-O2C4CF7

1,5



C4C6C5-C4C6C5

0,9



C6C4CF7-C6C4CF7

1,6


Таблица 6.

Экспериментальные и рассчитанные частоты, распределение потенциальной энергии (РПЭ) (через знак «плюс» или в скобках) между группами эквивалентных координат.

КР

Эксп.

106Pd(hfa)2

n, см-1

Симметрия

Pacч.

106Pd(hfa)2

n, см-1

Расч.

107Pd(hfa)2

n, см-1

Изотопный сдвиг Dn, см-1


РПЭ %


97

?

деформация молекулярного скелета

114

?

Колебания решётки кристалла

139

?

162

?

деформация молекулярного скелета

171

?

Колебания решётки кристалла

261

Ag

230

230

0

O9Pd1O10 +26

Pd1O10C12 +19

O10C12CF15 +12

C12C13 +10

C11C13C12 +10

O3Pd1O10 +10

348

B1g

336

336

0

C13C12CF15+48

O10C12C13+17

Pd1O10C12+13

C12CF15+11

O10C12CF15+7

535

B3g

dCF3 (преобладает) , [35]

610

Ag

601

601

0

Pd1O10+53

O10C12CF15+17

Pd1O10C12+13

O10C12C13+10

725

B1g

717

717

0

Pd1O10+49

O10C12CF15+23

Pd1O10C12+15

C13C12CF15+7

754

B3g

d(CHg) внеплоск. , [35]

826

Ag

n(CO), n(CC) , [35]

952

Ag

911

911

0

C12C13+30

O10C12+26

C13C12CF15+14

C11C13C12+12

O10C12C13+11

1112

Ag

1105

1105

0

C12CF15+43

C12C13+18

O10C12C13+15

O10C12CF15+13

Pd1O10C12+8

1153

B1g

nCF, dCF3, n(CC) , [35]

1229

B2g

nCF, dCF3, [35]

1263

B1g

1249

1249

0

C12CF15+33

C12C13+31

O10C12C13+18

O10C12CF15+7

Pd1O10C12+5

1346

Ag

n(CC), dCF3, [35]

1435

B1g

n(CO), d(CHHg), [35]

1558

B1g

1583

1583

0

O10C12+79

C12C13+12

1606

Ag

1615

1615

0

O10C12+73

C13C12CF15+8

C12C13+7

ИК

Эксп.

106Pd(hfa)2

n, см-1

Симметрия

Pacч.

106Pd(hfa)2

n, см-1

Расч.

107Pd(hfa)2

n, см-1

Изотопный сдвиг Dn, см-1


РПЭ %


120

Колебания решётки кристалла + деформации молекулярного скелета

217

237

259

B2u

251

250

1

Pd1O10+32

O10C12CF15+29

C12CF15+15

C13C12CF15+11

347

B3u

d(OMO) внеплоск, [35].

365

B2u

311

311

0

C13C12CF15+22

Pd1O10C12+21

Pd1O10+20

O10C12C13+20

C12CF15+8

O3Pd1O10+5

535

B3u

dCF3, [35]

578

B2u

556

556

0

Pd1O10+53

O10C12CF15+23

Pd1O10C12+11

C13C12CF15+10

662

B1u

n(MO), n(CO), dCF3, [35]

718

B3u

d хелат внеплоск, [35].

754

B2u

755

755

0

C12C13+53

C12CF15+18

O10C12+16

Pd1O10C12+6

815

B1u

900

900

0

O10C12+28

C12C13+28

O10C12C13+14

C13C12CF15+13

C11C13C12+13

1105

B2u

nCF, dCF3, [35]

1151

B1u

1098

1098

0

C12CF15+42

C12C13+19

O10C12C13+15

O10C12CF15+13

Pd1O10C12+8

1261

B2u

1247

1247

0

C12CF15+35

C12C13+30

O10C12C13+17

O10C12CF15+6

1342

B1u

n(CC), d хелат, dCF3, [35]

1436

B2u

n(CO), d(CHHg), [35]

1558

B2u

1585

1585

0

O10C12+79

C12C13+12

1668

B1u

1608

1608

0

O10C12+73

C13C12CF15+8

C12C13+7

КР

Эксп.

106Pd(aa)2

n, см-1

Симметрия

Pacч.

106Pd(aa)2

n, см-1

Расч.

107Pd(aa)2

n, см-1

Изотопный сдвиг Dn, см-1


РПЭ %


200,3

Ag

200,3

200,3

0

C13C12CH15 (50)

O5C12CH15 (16)

O4Pd1O5 (11)

Pd1O5C12 (11)

273

B1g

273,0

273,0

0

C13C12CH15+54

O5C12CH15+30

Pd1O5+10

C13C12+6

413,1

B1g

413,1

413,1

0

O5C12C13+39

C13C12CH15+28

C12CH15+16

Pd1O5C12+13

463,1

Ag

463,1

463,1

0

Pd1O5+47

C12CH15+16

C11C13C12+12 C13C12CH15+10

556,4

B2g

dхелат внепл. , [35]

702,2

Ag

702,2

702,2

0

Pd1O5+34

C12CH15+25

O5C12C13+15

O5C12CH15+10

C13C12+7

Pd1O5C12+6

780

B3g

d(CHg) внепл. , [35]

937

Ag

937,0

937,0

0

C13C12+50

O5C12+15

C11C13C12+10 C13C12CH15+10

O5C12C13+8

1022

B1g

1022,0

1022,0

0

C12CH15+57

O5C12+17

C13C12+14

1197,9

B1g

d(ССHg) + n(CO), [35]

1275,9

Ag

1275,9

1275,9

0

C12CH15+37

C13C12+27

O5C12C13+16

O5C12+9

O5C12CH15+6

1366,2

B1g

1366,3

1366,3

0

C13C12+35

C12CH15+24

O5C12+21

O5C12C13+14

1524,1

Ag

1524,1

1524,1

0

O5C12+63

C12CH15+10

C13C12CH15+7

C13C12+7

O5C12C13+6

1572

B1g

1572,0

1572,0

0

O5C12+51

C13C12+44

ИК

Эксп.

106Pd(aa)2

n, см-1

Симметрия

Pacч.

106Pd(aa)2

n, см-1

Расч.

107Pd(aa)2

n, см-1

Изотопный сдвиг Dn, см-1


РПЭ %


97

Колебания решётки кристалла + деформации молекулярного скелета

172

193

216

B1u

205,8

205,8

0

C13C12CH15+63

O5C12CH15+24

Pd1O5+7

263

B1u

268,9

268,5

0,4

O4Pd1O5+49

Pd1O5C12+30

C11C13C12+15

295

B2u

319,2

318,9

0,3

C13C12CH15+51

O5C12CH15+28

Pd1O5+10

O3Pd1O5+6

441

B2u

453,3

453,1

0,2

C13C12CH15+27

O5C12C13+24

Pd1O5+21

C12CH15+19

464

B1u

466,2

465,7

0,5

Pd1O5+70

C12CH15+11

C11C13C12+6 C13C12CH15+5

660

B3u

dхелат внепл. + d(С–СH3) , [35]

678

B1u

659,1

659,0

0,1

Pd1O5+35

C12CH15+21

O5C12C13+14

C13C12+11

O5C12CH15+9

784,5

B3u

d(CHg) внепл. , [35]

936,7

B1u

954,1

954,1

0

C13C12+53

O5C12+14

C13C12CH15+8

C11C13C12+8

C12CH15+7

O5C12C13+7

1021,8

B2u

1052,5

1052,5

0

C12CH15+54

C13C12+18

O5C12+14

Pd1O5C12+5

1198

B2u

n(CO) + d(CCHg), [35]

1272,2

B1u

1281,5

1281,5

0

C12CH15+38

C13C12+22

O5C12C13+18

O5C12+9

O5C12CH15+5

Pd1O5C12+5

1357,9

B1u

n(CO) + d(CH3), [35]

1395

B2u

1378,4

1378,4

0

C13C12+35

C12CH15+24

O5C12+21

O5C12C13+14

1524,6

B2u

1581,2

1581,2

0

O5C12+52

C13C12+43

1548,4

B1u

1509,2

1509,2

0

O5C12+63

C12CH15+9

C13C12+8

C13C12CH15+8

O5C12C13+6

1567,9

B1u

n(CO) + d(CH3) + n(CC), [35]

КР

Эксп.

106Pd(dbm)2

n, см-1

Симметрия

Pacч.

106Pd(dbm)2

n, см-1

Расч.

107Pd(dbm)2

n, см-1

Изотопный сдвиг Dn,

см-1


РПЭ %


192

B2g

?

230

Ag

221

221

0

C22C30+27 C22C30C32+22

C34C35C33+20 C22C23+11

Pd1O20+6

254

B1g

231

231

0

C22C30+25

C22C30C32+21

Pd1O20+14 C22C30C31+12

O19C22C23+11

C23C22C30+7

C34C35C33+6

418

Ag

390

390

0

C22C30C31+18

C35C33+11

C22C23+11 C21C23C22 +9.222

C22C30+8 Pd1O20C21 +7.340

O19Pd1O20+7 O3Pd1O19 +7.055

C34C35C33+6

O19C22+6

466

Ag

460

460

0

C34C35C33+82 Pd1O20+6

C22C30C32+5

583

Ag

578

578

0

C22C30C32+24 C34C35C33+21

C35C33+17 C22C30C31+9

Pd1O20+16

618

d(ССС) (толуол) , [35]

663

d(СH) (толуол) , [35]

688

dС–(С6H5) , [35]

705

B3g

dхелат внеплоск. , [35]

748

B3g

785

B2g

945

Ag

957

957

0

O19C22+36

C22C23+36

C22C30+11

1001

Ag

1018

1018

0

C34C35C33+61 C35C33+12

C22C30C31+8 C22C30C32+5

1023

B1g

1020

1020

0

Pd1O20C21+18 C34C35C33+15

O19C22C23+15 O19C22+14

C35C33+13 O19C22C30+8

C22C23+7

1062

Ag

1060

1060

0

C35C33+52

C34C35C33+44

1133

B1g

1133

1133

0

C35C33+84

C34C35C33+7

1166

d(ССH) + n(C–C) , [35]

1151

1187

1232

Ag

1224

1224

0

C35C33+63

O19C22+11

C22C23+10 O19C22C23+6

1301

B1g

1321

1321

0

C35C33+54

O19C22+23

O19C22C23+9

1392

B1g

1393

1393

0

C35C33+92

1442

Ag

1454

1454

0

C35C33+98

1493

Ag

1473

1473

0

C35C33+83

C22C23+5

1520

Ag

1510

1510

0

C35C33+35

O19C22+18

C22C23+13

C22C30+10

C22C30C32+9

C23C22C30+6

1597

B1g

1576

1576

0

C35C33+31

C22C23+29

O19C22+10 C22C30C31+9

C22C30C32+7

ИК

Эксп.

106Pd(dbm)2

n, см-1

Симметрия

Pacч.

106Pd(dbm)2

n, см-1

Расч.

107Pd(dbm)2

n, см-1

Изотопный сдвиг Dn,

см-1


РПЭ %


201

Колебания решётки кристалла

252

B2u

256

256

0

C22C30+26 C22C30C32+22

Pd1O20+13

C34C35C33+13

O19C22C23+13

276

B1u

279

278

1

C22C30+31 C34C35C33+20

C22C23+15 C22C30C32+9

C21C23C22+7 Pd1O20C21+5

365

B3u

d(OMO)внепл., dCHg, [35]

417

B3u

dхелат внепл. , [35]

469

B1u

474

474

0

Pd1O20+36 C34C35C33+16

C22C30C31+14 Pd1O20C21+11

552

B1u

540

540

0

Pd1O20+26 C34C35C33+20

C22C30C32+16 C35C33+14

C23C22C30+6 O19C22C30+6

C22C30C31+5

583

B2u

573

572

1

Pd1O20+50

C34C35C33+26

C22C30C31+9 Pd1O20C21+6

681

B3u

d (СH) (толуол) , [35]

706

B3u

dхелат внепл. , [35]

783

B3u

?

746

B2u

736

736

0

Pd1O20+9

C34C35C33+46

C22C30C31+9 Pd1O20C21+6

804

dхелат внепл. , [35]

838

B1u

n(CCф) + dфенил + dхелат, [35]

929

B2u

n(CCф) + dфенил + n(CC) , [35]

947

B1u

946

946

0

O19C22+43

C22C23+28

C22C30+11

C21C23C22+6

999

B1u

1018

1018

0

C35C33+98

1023

B2u

993

993

0

C35C33+50

O19C22+23

Pd1O20C21+9

C22C23+6

O19C22C23+5

1072

B1u

1087

1087

0

C34C35C33+60 C35C33+9

C22C30C31+8

1132

B2u

1132

1132

0

C35C33+85

C34C35C33+6

1152

d(ССH) + n(C–C) , [35]

1166

1185

1233

B2u

1253

1253

0

C35C33+57

O19C22+25

C22C23+7

O19C22C23+7

1303

B2u

1313

1313

0

C35C33+58

O19C22+20

O19C22C23+8

C22C30+5

1311

B1u

1316

1316

0

C35C33+72

C22C23+10

O19C22+6

1380

B2u

1393

1393

0

C35C33+92

1453

B2u

1452

1452

0

C35C33+86

C22C23+5

1483

B2u

1460

1460

0

C35C33+77

O19C22+7

C22C30+6

C22C23+6

1524

B2u

1495

1495

0

C35C33+64

C22C23+17

C22C30+5

1534

B1u

1507

1507

0

C35C33+41

O19C22+14

C22C23+10 C22C30C32+9

C22C30+9

C23C22C30+5

1588

B2u

1569

1569

0

C35C33+32

C22C23+29

C22C30C31+8

O19C22+8

C22C30C32+7

КР

Эксп.

n, см-1

106Pd(dpm)2


Симметрия

Pacч.

n, см-1

106Pd(dpm)2


Расч.

n, см-1

107Pd(dpm)2


Изотопный

сдвиг

Dn, см-1


РПЭ %


58

Колебания решётки кристалла + деформации скелета молекулы

91

115

Деформационные колебания скелета молекулы

153

172

250

Ag

250

250

0

C12C15CH27(20)

CH25C15CH27(14)

C15CH27(13)

O4Pd1O5(11)

C12C15(9)

O3Pd1O5(7)

C11C13C12(6)

C12C13(5)

345

B3g

341

341

0

CH25C15CH27(91)

398

B1g

396

396

0

CH25C15CH27(39) CH26C15CH27(33)

C15CH27(8)

C12C15(7)

Pd1O5(5)

449

B3g

449

449

0

C12C15CH27(84)

C15CH27(14)

514

Ag

514

514

0

Pd1O5(26)

CH26C15CH27(22)

C12C15CH25(14)

C13C12C15(12)

C15CH27(10)

O5C12C15(7)

C11C13C12(5)

658

B1g

658

658

0

Pd1O5(24)

C15CH27(23)

O5C12C15(14)

C13C12C15(8)

Pd1O5C12(8) C12C15CH27(6) CH26C15CH27(6)

722

B3g

dCHg, d хелат внеплоск. , [35]

827

B3g

d(CHg)внеплоск. , [35]

875

?

928

Ag

928

928

0

C15CH27(35)

C12C15(16) CH26C15CH27(12) O5C12C13(12) C11C13C12(6) C12C15CH27(5)

961

Ag

961

961

0

C12C13(52)

O5C12(17)

C11C13C12(8) C13C12C15(7)

993

dCH3 (CCH), [35]

1027

1146

Ag

1146

1146

0

C15CH27(72) C12C15(5)

1232

B2g

dС(СH3)3внеплоск. , [35]

1247

B3g

1253

1253

0

C15CH27(83) C12C15CH27(12)

1281

B3g

nCO, dCCHg, nCC, dCH3 (HCH), [35]

1362

Ag

1362

1362

0

O5C12(35) C12C13(23) C12C15(17) O5C12C15(7)

1394

dCH3 (HCH), [35]

1446

1462

1498

1528

B1g

n(CC), n(СС), [35]


1551

Ag

1556

1556

0

O5C12(36) C12C15(20)

O5C12C13(14) C11C13C12(13)

C13C12C15(8)

1561

B1g

1567

1567

0

C12C13(49)

O5C12(44)

ИК

Эксп.

n, см-1

106Pd(dpm)2


Симметрия

Pacч.

n, см-1

106Pd(dpm)2


Расч.

n, см-1

107Pd(dpm)2


Изотопный сдвиг

Dn, см-1


РПЭ %


230

B1u

231

231

0

CH25C15CH27(20) C15CH27(15) C12C15CH27(15) C12C15(10) C12C13(7) O4Pd1O5(7) Pd1O5(6) Pd1O5C12(6)

279

B1u

279

279

0

O4Pd1O5(42) Pd1O5C12(14)

C12C15CH25(11) C11C13C12(10) Pd1O5(7) C13C12C15(5)

336

B3u

340

340

0

CH25C15CH27(94)

401

B2u

403

403

0

CH26C15CH27(39) CH25C15CH27(31)

C15CH27(10) C12C15(9) Pd1O5(6)

438

B1u

438

438

0

Pd1O5(26) Pd1O5C12(17) C12C15CH25(13) O4Pd1O5(13) C12C15CH27(8) C11C13C12(8)

516

B2u

516

516

0

C13C12C15(19) C12C15CH27(16)

Pd1O5(15) O3Pd1O5(12) C12C15CH25(9) O5C12C15(7) CH26C15CH27(7) C15CH27(6)

657

B1u

658

658

0

C15CH27(55) C12C15(15)

CH26C15CH27(11) Pd1O5(6) C12C15CH27(6)

680

?

763

B3u

dCHg, d хелат внеплоск., [35]

794

B2u

794

794

0

C15CH27(39) O5C12C13(16) Pd1O5C12(12) Pd1O5(7) CH26C15CH27(6) O5C12C15(6)

878

dCH3 (CCH), n(CC), [35]

936

B1u

936

936

0

C15CH27(36) C12C15(15) CH26C15CH27 O5C12C13(10) C12C15CH27(6)

962

B1u

962

962

0

C12C13(52) O5C12(16) C11C13C12 C13C12C15(7) C12C15(5)

1026

dCH3 (CCH), [35]

1144

B2u

1144

1144

0

C15CH27(59) C12C15(13)

C12C13(8)

CH25C15CH27(5)

1185

B2u

1185

1185

0

C15CH27(30) C12C15(18)

C12C13(14) CH26C15CH27(11) O5C12(9) C12C15CH25(8)

1228

Au

dC(CH3)3, [35]

1246

B3u

1252

1252

0

C15CH27(83) C12C15CH27(12)

1359

dCH3 (HCH), [35]

1380

B1u

1380

1380

0

O5C12(38) C12C13(22)

C12C15(15) O5C12C15(7)

1444

dCH3 (HCH), [35]

1458

1496

B2u

n(CC), n(СС), dCCHg, [35]

1528

?

1540

1555

B1u

1554

1554

0

O5C12(35) C12C15(21) O5C12C13(14) C11C13C12(14) C13C12C15(8)

1589

B2u

1589

1589

0

C12C13(47) O5C12(44)

2868

n(C—H в CH3) , [35]

2907

2962

(в таблицах приняты следующие обозначения: n(ху) – валентное колебание с участием атомов х и у, d(хуz) – деформация угла, образованного атомами хуz, dхелат – деформация хелатного цикла в целом, при котором участвуют все связи и углы в равной степени, d - деформационное колебание)


На основе выше перечисленных данных по температурной зависимости давления пара бета-дикетонатов были оптимизированы режимы напыления пленок данных хелатов. Найдено, что оптимальная температура испарения Pd(aa)2 100-110 оС, Pd(dbm)2– 220-230 оС остаточное давление в реакторе – 5?10-5 Торр.

Методом рентгенофазового анализа было установлено, что плёнка Pd(aa)2 поликристаллическая, а плёнка Pd(dbm)2 рентгеноаморфна. На рисунке 14 представлены дифрактограммы пленки и порошка Pd(aa)2. Интенсивности дифракционных линий свидетельствуют о наличии текстуры в пленке. В пленке Pd(aa)2 плоскости (101) и (-101) кристаллитов ориентированы преимущественно параллельно поверхности подложки при этом угол наклона молекул Pd(aa)2 относительно плоскости подложки составляет 840 (рис.15).


Рис. 15. Ориентация молекул Pd(aa)2 в плёнке (поверхность подложки совпадает с плоскостью листа).

3.4.1. Исследование пленок бета-дикетонатов методом спектроскопии КР.

Известно, что число, тип и интенсивность колебаний в КР-спектрах кристаллов определяется тензором рассеяния. В полностью разориентированных объектах (газы, жидкости, мелкодисперсные порошки) спектральные различия между индивидуальными колебаниями стираются благодаря необходимости усреднения тензора КР по всем направлениям. В этом случае все колебания можно разделить только на поляризованные и деполяризованные. Поликристаллические пленки представляют собой промежуточный случай между монокристаллами и полностью разориентированными объектами. В этом случае тензор поляризуемости молекул обладает свойствами полностью разориентированных объектов по отношению к одним элементам симметрии и ориентированных - по отношению к другим. Поэтому для определения ориентации пленок вначале находится аналитическое выражение для компонент тензора поляризуемости для каждого из возможных типов колебаний, в котором один элемент симметрии (например, угол поворота вокруг оси n-го порядка) выступает в качестве параметра, а по другим проведено усреднение.

а)

б)

Рис. 14. Дифрактограммы порошка (а) и плёнки (б) Pd(aa)2.

Затем вычисленные значения компонент тензора сравниваются с измеренными с целью нахождения наилучшего соответствия для всех молекулярных колебаний. Если молекулы ориентированы относительно какой-либо оси и повернуты вокруг нее на какой-то определенный угол, то соответствующие тензоры могут быть получены путем поворота исходных тензоров на этот угол. Если молекулы разориентированы относительно какой-либо оси, то среднее значение интенсивности КР определяется путем усреднения компонент тензора при вращении вокруг этой оси от 0 до p/2. Для определения ориентации молекул необходимо знать отношение Iii/Iij для каждого типа колебаний при различных способах ориентации молекул относительно поверхности подложки. Подробное описание методики определения ориентации плёнок приведены в работах [47,48]. Интенсивность линий КР пропорциональна квадрату матричного элемента тензора поляризуемости. На рисунке 16 представлены спектры КР пленки Pd(aa)2 в параллельных и перекрестных поляризациях падающего и рассеянного света. Сравнительный анализ тензоров для группы D2h и экспериментальных значений соотношения интенсивностей в спектрах КР пленки для колебаний всех типов симметрии показывает, что такое значение отношения интенсивностей возможно только в случае, когда молекулы в пленке разориентированы относительно оси z и повернуты относительно оси X на определенный угол. Как было показано с помощью метода РФА, угол наклона молекул в пленке относительно поверхности подложки составляет 84о.

3.5. Исследование КР спектров газовой фазы бета-дикетонатов палладия (II).

Регистрация спектров КР газовой фазы позволяет отделить колебания решётки кристалла от чисто деформационных колебаний молекулы. КР спектры газовой фазы были зарегистрированы только для Рd(dpm)2 и Pd(hfa)2, спектры газовой фазы Рd(dbm)2 и Pd(aa)2 зарегистрировать не удалось, т.к. соединения во время эксперимента разложились. На рисунке 17 представлены спектры КР кристаллической и газовой фаз в области до 200 см-1, где отчётливо прослеживается разделение между кристаллическими частотами и частотами соответствующими деформационным колебаниям скелета молекулы, в области частот выше 200 см-1 существенных изменений в спектрах не наблюдалось. Частотный сдвиг при переходе из кристаллической в газовую фазу в области выше 200 см-1 порядка 3-5см-1, что свидетельствует о слабых межмолекулярных взаимодействиях в исследованных кристаллах комплексов бета-дикетонатов палладия (II).


Рис.16. Поляризованные КР спектры плёнки Pd(aa)2: (хх) – в параллельных поляризациях падающего и рассеянного света, (ху) – в перекрестных поляризациях.



Рис.17. Cравнение спектров КР газовой и кристаллической фазы для Pd(dpm)2 и Pd(hfa)2.



ВЫВОДЫ:

  1. Синтезированы и охарактеризованы бета-дикетонаты палладия.

  2. Проведено исследование колебательных спектров бета-дикетонатов палладия, основанное на анализе поляризованных спектров растворов в бензоле. На основании проведенного расчета частот и форм колебаний молекул бета-дикетонатов палладия уточнена интерпретация спектров КР и ИК.

  3. Зарегистрированы спектры КР газовой фазы для Pd(dpm)2 и Pd(hfa)2 при помощи которых удалось разделить частоты соответствующие колебаниям кристалла и деформациям скелета молекулы бета-дикетоната.

  4. На основании совокупности полученных экспериментальных данных оптимизированы режимы осаждения слоев Pd(aa)2. Методом вакуумно-термического напыления получены поликристаллические пленки Pd(aa)2. Проведено исследование полученных пленок методом спектроскопии КР и рентгеновской дифракции.

  5. Установлено, что пленка Pd(aa)2 ориентирована преимущественно таким образом, что плоскости микрокристаллитов (101) и (-101) расположены параллельно подложке, при этом угол наклона молекул относительно плоскости подложки составляет 84о.



ЛИТЕРАТУРА.

1. Грибов Л.А., Деменьев В.А. Методы и алгоритм вычислений в теории колебательных спектров молекул. – М.: Наука, 1981-356с.

2. Расчёт силовых полей многоатомных молекул методом регуляризации Тихонова/ И.В., Кочиков, Г.М. Курамшина, Ю.А. Пентин, А.Г. Ягода// Докл. АН СССР.- 1985.- Том 283. №4. – С.850-854.

3. Балтахинов В.П. Решение обратных задач колебательной спектроскопии в системе зависимых внутренних координат. – Новосибирск, 1988.- 26с.-(Препринт/АН СССР. Сиб.отд-ие. Ин-т Катализа; № 88-06.

4. Юрченко Э.Н. Методы молекулярной спектроскопии в химии координационных соединений и катализаторов. – Новосибирск: Наука.1986-353с.

5. Зерби Дж. Органической при расчетах силовых больших молекул//Колебательная спектроскопия. Современные воззрения. Под ред. Барнса А., Орвилл-Томаса У. – М: Мир, 1981. – С.292-312.

6. Князева А.Н., Шугам Е.А., Школьникова Л.М. //Журн. структур. Химии. – 1970. – 11. с. 938-939.

7. Gromilov S.A., Baidina I.A., Borisov S.V. et al. // IV European Powder Diffraction conference. Abstracts. Chester, England. – 1995. – P. 226.

8. Siedle A.R., Newmark R.A., Pignolet L.H. //Inorg. Chem. – 1983. – 22. p. 2281-2286.

9. Baker G.J.,Raynor J.M.,Smits J.M.M. et al. // J.Chem.Soc., Dalton Trans. - 1986.- Р.2655-2662.

10. Шугам Е.А.,Школьникова Л.М.,Князева А.Н. // Журн.структур.химии. -1968.- 9.- С.222-227.

11. Стабников П.А., Байдина И.А., Жаркова Г.И., Игуменов И.К., Борисов С.В. //Журн. структур. Химии. – 2000.- т.41, №1.- с.127-138.

12. Жаркова Г.И. и др. //Коорд. Химия. – 2000. – т.26, №8. – с.614-620

13. Сидоров А.Н., Коробов М.В., Журавлева Л.В. Масс-спектральные термодинамические исследования. М.:МГУ. 1985. С.92.

14. Nakamoto K., Martell A.E.//J. Chem. Phys. – 1960. – V.32, №4. – P. 588-597.

15. Nakamoto K., McCarty., Ruby A., Martell A.E.// L. Amer. Chem. Soc.// 1961. – V.83, №5. – P. 1066-1069.

16. Nakamoto K., Morimoto Y., Martell A.E.// J. Chem. Phys. – 1962. – V.66, №2. – P. 346-348.

17. Накомото К. Инфракрасные спектры неорганических и координационных соединений, Издат. «МИР», Москва 1966, 1991 г.

18. Junge H.,//Spectrchim. Acta, 1968, 24A, N8, 1219-1243.

19. Vickova B., Strauch B., Horak M. Measurement and interpretation of infrared and Raman spectra of bis-(2,4-pentedionate) complexes of Cu(II) and Pd(II)// Collect. Czechosl. Chem. Comm. – 1985. – V.50, №2. – Р. 306-316.

20. Hancock R.D., Thornton D.A.//J.Mol.Struct., 1969, 4, 361-367.

21. Краденов К.В., Колесов Б.А. Анализ нормальных колебаний бета-дикетонатов меди(II). Новосибирск, 1986. Деп. в ВИНИТИ 01.12.86., №8696-в86.

22. Краденов К.В., Колесов Б.А. Расчёт распределения колебательной энергии по естественным координатам на примере бета-дикетонатов меди(II). Новосибирск, 1986. Деп. в ВИНИТИ 01.12.86., №8696-в86.

23. Краденов К.В., Колесов Б.А., Игуменов И.К.// Бета-дикетонаты металлов. Владивосток, 1990. С. 118-143.

24. Железнова Л. И. Электронные, инфракрасные спектры и строение бета-дикетонатов 3d – металлов в газовой фазе: Автореф. дис… к.х.наук. – Киев, 1985. – 17с.

25. Носкова М.П., Грибов Л.А., Золотов Ю.А. Исследование строения бета дикетонатов методом ИК-спектроскопии. Дибензоилметанатные и теноилтрифторацетонаты// Ж. Структур. химии. – 1969. – Том 10., №3. – С.474-480.

26. Колесов Б.А., Игуменов И.К.// Коорд. Химия. – 1985. – т.11, №4. – с.485-489.

27. Hester R.E., Plane R.A.// Inorg/ Chem.- 1964. – V.3. – P.513-517.

28. Haigh J.M., Thornton D.A. Spectroscopic evidence for symmetry-restricted p-interaction evidence b-keto-enolates //Helvetica Chim. Acta. – 1971. – V.54, №7(2). – Р.2221-2228.

29. Hancock R.D., Thornton D.A. Crystal field aspects of vibrational spectra. I. Fist-row transition metal (III) b-keto-enolates// J.Mol.Struct.- 1969. –V.4, №5. – Р.361-367.

30. Краденов К.В., Колесов Б.А., Игуменов И.К.// Коорд. Химия. – 1987. – т.13, №9. – с.1178-1187.

31. Mikami M., Nakagava I., Shimanouchi T.//Spectrchim. Acta. – 1967. – V.23A, №4. – Р. 1037-1055.

32. Hester R.E., Plane R.A.// Inorg. chem. – 1964. – V.3. – P.513-517.

33. Титов В.А., Коковин Г.А. Математика в химической термодинамике. Новосибирск.: Наука. 1980. С. 98.

34. Исследование бета-дикетонатов благородных металлов и металлов III группы методами КРС, ИК, ЯМР/ К.В. Краденов, Б.А. Колесов, Г.И. Жаркова, Н.М. Тюкалевская// У Всесоюз. совещ. «Спектроскопия координационных соединений»: Тез. Докл.-Краснодар, 1988. – С.285.

35. К.В. Краденова Диссертация на соискание учёной степени кандидата физико-химических наук Исследование нитритных, b-дикетонатных, p-дикарбонильных комплексов методами колебательной спектроскопии. УДК 541.1:541.49:543.42:546.271.

36. Бургина Е.Б. Характеристичность нормальных колебаний в исследовании свойств некоторых неорганических и координационных соединений: Автореф. дис… канд.физ.-мат.наук. – Новосибирск: Ин-т Катализа СО АН СССР, 1987.- 16с.

37. Пейнтер П., Коулмен М., Кениг Дж. Теория колебательной спектроскопии. Приложение к полимерным материалам. Ред. Ениколопов Н.С., Олейник Э.Ф. –М.: Мир, 1986.-580с.

38. Колебания молекул /М.В. Волькштейн, Л.А. Грибов, М.А. Ельяшевич, Б.И. Степанов. –М.: Наука, 1972.-700с.

39. Программа для расчёта распределения потенциальной энергии /Р. Арока Муньос. Ю.Н. Панченко, Г.С. Копотев, Н.Ф. Степанов// Ж. прикл. спектроскопии.- 1970.- Том 12, №3.-С.558-559.

40. Burkard O. Durchrechnung einiger ausgewahlter molekul modelle// Proc.Ind.Acad.-1938.-V.40.-P. 365-382.

41.Shimanouchi T. The normal vibrations of polyatomic molecules as treated by Urey-Bradley field//J.Chem.Phys.-1949.- V.17, №3.-P.245-248.

42. Alix A.J.P., Muller A. On the definition of the total energy distribution method for the assignment of normal modes of vibration//J.Mol.Struct.-1975.-V.24.-P.229-236.

43. Fujita J., Martell A.E., Nakamoto K. Infrared spectra of metal chelate compounds. VI A normal coordinate treatment of oxalato metal complexes//J.Chem.Phys.-1962.-V.36, №2.-P.324-331.

44. Дик Т.А., Никанович М.В., Умрейко Д.С. Исследование состояния нитратогруппы в комплексах соединений в комплексах соединений уранила по колебательным спектрам// Ж. прикл. спектроскопии.-1985.- Том 43, №5.-с.809-814.

45. Лазарев А.Н., Игнатьев И.С., Тенишева Т.Ф. Колебания простых молекул со связями Si-O.-Л.: Наука.1980.-159с.

46. Герцберг Г., Колебательные и вращательные спектры многоатомных молекул, Издатинлит, М., 1949.

47. Basova T.V., Kolesov B.A. Raman Polarization of Orientation of molecular thin films// Thin Solid Films. – 1998. – V.325, № 1. – Р. 140-144.

48. Basova T.V., Kolesov B.A., Igumenov I.K. The determination of the orientation of CuPc film by Raman Spectroscopy// Thin Solid Films. – 1997.- V.304, № 1-2.-Р.166-169.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Женщина приходит на работу с фингалом.
Сотрудник заметил, спрашивает:
- Кто это тебя так?
- Муж!
- Муж? Я думал он в командировке.
- Ха! Он думал! Я была уверена!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, диплом по химии "Колебательные спекторы бета-дикетонатов палладия (II) и их интерпретация", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru