Реферат: Алгоритмы вывода кинетических уравнений для стационарных и квазистационарных процессов - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Алгоритмы вывода кинетических уравнений для стационарных и квазистационарных процессов

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 80 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Алгоритмы вывода кинетических уравнений для стационарных и

квазистационарных процессов


Используя соотношения (51) и (57), можно получить выражение для скорости любой стадии механизма (алгоритм Мезона).



Для каталитической реакции


или (61)


(62)


Для графов механизмов с висячими вершинами


(63)


Деревом называется любая последовательность дуг графа, не содержащая циклов. Максимальным деревом (или каркасом) называют последовательность дуг, проходящую через все вершины и не содержащую циклов. Корневым деревом, или деревом, имеющим корень в вершине i (каркас вершины i), называют максимальное дерево, все дуги которого направлены к вершине i. Для КГ5 двухмаршрутной каталитической реакции приведены корневые деревья для вершин М, X1 и X2.


Теперь определим вес корневого дерева Dik как произведение весов дуг (k-тое дерево в i-той вершине)


(j ? {i, k}) (48)


Корневой определитель Di вершины i есть сумма весов корневых деревьев (сумма весов каркасов) вершины i


(49)


Предложено несколько методов определения величин Di (и всех Dik). Простейший алгоритм (Л.Г. Брук) сводится к следующим операциям. Определим как произведение сумм весов дуг, выходящих из всех вершин, кроме i-той. Например, для вершины М в КГ5 (, )



Исключим из произведение весов, образующих цикл (контур), включая произведения весов прямых и обратных стадий (w3w–3). В результате получим





Удалим циклы w1w2, w1w–1 и w2w–2, w–1w–2.



Как известно, общий метод вывода уравнения скорости по маршруту (по итоговому уравнению маршрута) для стационарных и квазистационарных реакций сводится к нахождению выражений для концентраций интермедиатов Xi в результате решения системы линейных алгебраических уравнений для линейно независимых Xi. Система уравнений решается по правилу Крамера (см. выше)


(50)


где D – определитель системы линейных уравнений, записанный для коэффициентов при неизвестных, – определитель, в котором столбец коэффициентов при Xi заменен на столбец постоянных свободных членов.

Как мы уже упоминали, Кинг и Альтман впервые применили метод графических диаграмм для нахождения определителей и D. Общее правило, позволяющее использовать графы для решения проблем, связанных с линейными законами типа y = ax, было сформулировано Мэзоном и использовано для решения систем уравнений Кирхгофа в теории электрических цепей (х – сила тока, а – сопротивление, у – разность потенциалов).

Суть этого правила выражается соотношением (51)


(51)


Применительно к кинетике реакций с линейным механизмом величина х в линейном законе у = ах – концентрация i-того интермедиата, а – вес стадии , у – скорость стадии . Это правило было использовано по аналогии Волькенштейном и Гольдштейном для вывода кинетических уравнений скорости ферментативных реакций методом графов. В работах Яблонского и сотр. доказано соотношение (51), и показана его связь с правилом Крамера. Если и D записать через веса стадий, а в случае каталитической реакции вынести из концентрацию катализатора ([М], КГ5), получим:


, (52)


где Di = , DM = D

Из (50) и (52) получаем также


(53)


В случае некаталитических реакций концентрация Xi запишется через концентрацию нуль-вещества в нуль-вершине графа

(54)


Если все [Xi] в каталитической реакции выразить через [М], получим выражение для суммарной концентрации катализатора


(55)


(56)


Из (52) и (56) получаем


(57)


В гетерогенных процессах при нормировке всех Xi к [Х]S (выражение [Xi] через доли поверхности ) получаем


(58)


Есть два способа учесть наличие висячих вершин в материальном балансе по катализатору. Найдя корневые определители для висячих вершин, их следует включить в , тогда [М]S будет включать и соединения, находящиеся в висячих вершинах. Поскольку ребра графа, инцидентные висячим вершинам, в случае стационарных и квазистационарных процессов являются равновесными стадиями, можно ввести дополнительную функцию – закомплексованность интермедиата (любой вершины циклического графа)



(59)


где [XS] – концентрация соединения в висячей вершине графа, связанной с графом стадией S, wS и w–S – веса стадии, инцидентной висячей вершине и направленной от Xi к XS. Очевидно, что отношение включает константу равновесия KS и концентрации участников реакции, входящие в wS и w–S. Так, для вершины М в графе КГ4 получим



Формула (57) может быть модифицирована, поскольку ,


(60)


По уравнению стационарности стадий легко установить связь скорости стадии со скоростью по маршруту, и таким образом найти RP. При отсутствии висячих вершин Fi = 1.

Другой алгоритм был предложен Волькенштейном и Гольдштейном и модифицирован Яблонским и сотрудниками. На графе многомаршрутной реакции выбирается стадия, принадлежащая одному из маршрутов (Wj = RP), и скорость этой стадии записывается уравнением (64)


, (64)


(или через SFiDi для случая с висячими вершинами)

где – вес n-ого цикла по маршруту Р, включающего стадию j, Dpn – определитель подграфа, получающегося при сжатии n-ого цикла по маршруту Р в одну вершину с корнем в полученной при сжатии вершине, К – число циклов, проходящих через стадию j.

Если скорость по маршруту Р описывается комбинацией скоростей стадий Wj, то уравнение (64) записывается для всех стадий.

Пример 8. Рассмотрим КГ5. Из графа видно, что базис маршрутов включает два маршрута (два простых цикла). Выберем эти простые циклы в качестве базиса. Первый маршрут включает стадии 1 и 2, второй – 1, 3, 4. Из КГ5 с очевидностью следует, что W2 = R1 и W4 = R2. Естественно, что и W3 = R2, но для упрощения вывода возьмем необратимую стадию 4. По второму алгоритму запишем величины циклов Сpn.

;

(= 0);

;

; .

Запишем величины подграфов Dpn: D11 = w–3 + w4 (сумма весов деревьев, входящих в вершину, полученную при сжатии цикла 11), D12 = 1 (одной вершине соответствует Dpn = 1), D21 = 1 и D22 = 1. Используя величины DM, и , найденные выше, запишем выражения для R1 и R2:


(64)


(65)



Для одномаршрутной реакции скорость стадии , а в случае линейного механизма nS = 1. Следовательно


(66)


Полезно отметить, что в этом случае циклическая характеристика С = С+ – С соответствует закону действия масс, записанному для итогового уравнения одномаршрутной реакции как элементарной стадии.

Пример 9.

Механизм реакции изобразим КГ6:


(1)


(2)


(3)

(4)



Стехиометрический анализ механизма привел к матрице Г для Р = 2 с соответствующим набором независимых итоговых уравнений (QP = 2)



I)


II)


На КГ6 указаны эти маршруты, соответствующие двум минимальным циклам КГ6. При сложении двух векторов получим маршрут NII* (1 1 2 1) с уравнением 2NO + 2CO ® N2 + 2CO2, а при вычитании – маршрут NII** (1 1 0 –1), включающий цикл из 1, 2 и 4 стадий: 2NO + N2 ® 2N2O. Из условия стационарности стадий () и КГ6 следует, что


W1 = R1, W2 = R1, W3 = R1 + R2, W4 = R2


(для маршрутов I и II)

Используем алгоритмы Яблонского (64) и Мезона (62). Для обоих уравнений нужны величины Di. Запишем для каждой вершины i произведения сумм весов стадий, выходящих из всех других вершин КГ j ? i. Перемножим скобки и исключим из полученных сумм произведения стадий, образующих цикл, включая произведения . В результате получим Di. Для графа КГ6 запишем произведения сумм весов стадий:



Здесь нет циклов и .





Здесь два цикла и . Поэтому исключим их:



Таким образом, в КГ6 девять деревьев, величины которых войдут в SDi.

Для использования уравнения (64) надо найти величины циклов Сpn, проходящих через стадию, определяющую скорость RP (p – номер маршрута, n – номер цикла), и величины подграфов Dpn, которые являются корневыми определителями графов в вершине pm, образующихся при сжатии цикла n в одну вершину pn. В случае, когда после сжатия цикла остается одна вершина Dpn = 1. Итак, выбираем R1 = W2 и R2 = W4. В реакциях на поверхности [M]S = 1 ().


(67)


Величина цикла равна произведению весов стадий. Тогда:


D11 = 1


D12 = 1


(68)


(69)



D22 = 1


(70)


Получим уравнение для R2 по правилу Мезона (62), т.е. уравнение идентичное уравнению (70).

Топология механизма и особенности кинетической модели


Структура КГ (топологический тип механизма) сильно влияет на вид кинетического уравнения, степень его сложности, число комплексов констант скорости и число констант скорости в числителе и знаменателе кинетического уравнения. Например, для Р = 2 имеем 3 топологических класса с заметно различными кинетическими моделями.



Рассмотрим два механизма классов В и C с Р = 2, S = 4, I = 3.





КГ 7


(71)

(72)


Разделим SDi и числитель на DM:


(73)


Из уравнений (71 – 73) видно, что скорости маршрута II входят в R1 только за счёт закомплексованности катализатора FM (член в квадратных скобках), где: , . В случае использования величины [M] уравнение (71) описывает скорость по маршруту I без какого-либо влияния стадий маршрута II. Если сложность модели оценить числом К* констант скорости, входящих во все слагаемые числителя и знаменателя кинетического уравнения, то , а .

Механизм класса С представлен на КГ 8:






КГ 8


(74)

Отметим сразу, что для структуры КГ 8 и в случае [M] характерно участие стадий маршрута II в уравнении для R1. Величина .


(75)


В уравнении (75) . Здесь не столь большое увеличение К* при переходе от [М] к [МS]. Степень сложности механизма, степень связанности графа является важным для дискриминации гипотез фактором.

Для КГ 9, отражающего механизм цепного процесса, получим более простые соотношения для скоростей I и II маршрутов, зависящих от [Х0] (инициатора).








Скорость второго маршрута включает стадии первого маршрута и концентрацию, стоящую в первой вершине Х0.

Вопросы для самоконтроля

1) Приведите алгоритм использования правила (метода) Хориути для нахождения итоговых уравнений маршрутов.

2) Как связаны скорости по маршрутам со скоростями стадий и скоростями по веществам?

3) Как связаны скорости по веществам со скоростями стадий? Смысл условия квазистационарности Боденштейна.

4) Приведите соотношения основных базисов в стехиометрии реакций и в теории маршрутов.

5) На каком соотношении основано применение теории графов для вывода кинетических уравнений?

6) Запишите материальный баланс по катализатору для реакции с линейным механизмом методом теории графов.

7) Примените условие стационарности стадий для вывода кинетического уравнения двухмаршрутной реакции с тремя стадиями



Литература для углубленного изучения


1. Темкин О.Н., Кинетика каталитических реакций в растворах комплексов металлов, М., МИТХТ, 1980, ч. II (учебное пособие).

2. Яблонский Г.С., Быков В.И., Горбань А.Н., Кинетические модели каталитических реакций, Наука, СО, Новосибирск, 1983.

3. Киперман С.Л., Основы химической кинетики в гетерогенном катализе, М., Химия, 1979.

4. Темкин О.Н., Одинцов К.Ю., Брук Л.Г., Приближения квазистационарности и квазиравновесия в химической кинетике, М., МИТХТ, 2001, 78 с. (учебное пособие).

5. Темкин О.Н., Брук Л.Г., Бончев Д., Топологическая структура механизмов сложных реакций, Теоретич. и эксперимент. химия, 1988, №3, с. 282.

6. Temkin O.N., Bonchev D., Application of Graph Theory to Chemical Kinetics, J. Chem. Education, 1992, v. 92, p. 544 – 550.

7. Temkin O.N., Zeigarnik A.V., Bonchev D.G., Chemical Reaction Networks. A Graph-Theoretical Approach. CRC Press, Boca Raton, USA, 1996, 286 p.

8. Горский В.Г., Швецова-Шиловская Т.Н., Петрунин В.А., Феноменологическая и стационарная кинетика сложных химических реакций, Ойкумена, 2002, 407 с.


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
- Понимаете ли, перелет через океан очень долгий, вот я и попросил стюардессу найти коллегу по профессии, чтобы поболтать о работе, скоротать время.
- И вас ни капельки не смутило, что вы командир аэробуса? И стюардессе, выполняя вашу просьбу, пришлось идти по салону самолета, летящего над Атлантикой, и спрашивать у пассажиров, не умеет ли кто-нибудь из них управлять самолетом?
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по химии "Алгоритмы вывода кинетических уравнений для стационарных и квазистационарных процессов", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru