Реферат: Теория многочленной аппроксимации - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Теория многочленной аппроксимации

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 64 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы





Теория многочленной аппроксимации рядами Фурье для периодических функций.

В предыдущих лабораторных работах была изложена теория многочленной аппроксимации. Попробуем теперь изложить подобную теорию для аппроксимации периодических функций рядами Фурье. Ряд Фурье на интервале -NtN можно записать так:{1}

где {2} (k=0, 1, 2, …) {3}

(k=0, 1, 2, …)




1



- 0 


-1


В качестве примера рассмотрим разложение прямоугольного колебания в ряд Фурье. Подобное колебание, называемое меандром, находит широкое применение в {5-right} технике. Итак, {4}

Так как на практике мы не можем вычислить бесконечную сумму, проанализируем, как увеличение числа слагаемых влияет на приближение. При этом мы сталкиваемся с явлением Гиббса.


H(t)




0  2 3 t

Прямоугольная


Рассмотрим это явление на примере прямоугольной волны H(t) с периодом 2. {6}



Если вычислить сумму первых 2n членов, то все члены с косинусами будут равны нулю и получаем: {7} 


H2n(t)

H(t)

Ѕ

1





явление Гиббса  t


{2287_8} Гиббс отметил, что частичная сумма H2n превосходит функцию на некоторую величину. Более точно

H2n{9}1,08949…, при n

Действительно, H2n(t) не только превосходит функцию H(t), но и имеет тенденцию колебаться около H(t), и колебания уменьшаются медленно, когда t удаляется от разрыва.

Чтобы объяснить явление, запишем (1) как {10} (2)

где использована формула {11}

Из выведенной формулы (2) ясно, что максимум и минимум для 0t достигаются в точках{12} ,

то есть при t={13} , m=1, 2, …, 2n-1, и что они чередуются.

То, что верно для этой специальной функции, очевидно, верно и для более общих функций, так как разрыв можно рассматривать как возникающий из прямоугольной волны, прибавленной к главной функции.

Действительно, явление Гиббса мы можем наблюдать и при приближении пилообразного сигнала с помощью рядов Фурье. С пилообразными колебаниями часто приходится сталкиваться в устройствах для развёртки изображения в осциллографах.

Заметим, что при увеличении числа слагаемых в рядах Фурье, приближение улучшается (уменьшается глубина колебаний). Это наглядно показывают графики, приведённые в конце.

Задача следующего этапа этой работы - фильтрация зашумлённого сигнала с помощью быстрых преобразований Фурье (БПФ).

Рассмотрим произвольный сигнал. В данном случае он задан как {14}

На практике почти всегда имеют дело с зашумлённым сигналом. Поэтому наложим на сигнал некоторый шум. Теперь попробуем очистить наш сигнал от шумов. Для этого применим БПФ, а затем цифровой фильтр.

Итак, если использовать комплексное представление тригонометрических функций {15}

то получим {16} ,

где {17}

Легко видеть, что {18}

(ak и bk -коэффициенты разложения в ряд Фурье)

Комплексная форма ряда Фурье удобнее в обращении при теоретических исследованиях, но вычисления проводятся с действительной формой. В комплексной форме существуют и положительные и отрицательные частоты: для каждой положительной частоты мы заменили две функции, синус и косинус, единой экспоненциальной, но имеющей как положительную, так и отрицательную частоту.

Покажем, что соответственно представлению рядам Фурье периодической функции имеется представление интегралом Фурье любой функции {19}

, где {20}

.

Функция F(), грубо говоря, соответствует коэффициентам cл в ряде Фурье. Это - спектральная функция (спектральная плоскость); F() описывает амплитуду частоты () в функции f(t). Говорят, что функция F() является преобразованием Фурье функции f(t). Обе функции несут одну и ту же информацию, так как каждая может быть найдена из другой, но только в разных формах: : f(t) в области времени, а F() в области частот.

Итак, возвращаясь к нашей задаче, переведём сигнал из временной области в частотную. После этого применим цифровой фильтр. С помощью этого фильтра мы отбрасываем шумовые составляющие сигнала, оставляя частотные составляющие. Но нужно заметить, что пытаясь избавится от шумовых составляющих сигнала, мы невольно отбрасываем часть частотных. чем выше порог фильтрации, тем меньше шума мы получаем, но в то же время мы теряем всё большую часть полезной информации, то есть сигнал искажается. В этом я убедился на практике. Чем выше был порог шума, тем более «гладкой» была очищенная функция, но при наложении на неё исходного незашумлённого сигнала можно было убедиться в значительных расхождениях. И наоборот, чем ниже был порог шума, тем функция была менее «гладкой», но совпадение с исходным сигналом было лучше. При выборе определённого порога фильтрации нельзя не учитывать этот факт. Чтобы определить величину этого параметра прежде всего нужно руководствоваться особенностями поставленной задачи.


Фурье-анализ.

ak


Как в чистой, так и в прикладной математике, обычно ищут инварианты представления — инварианты по отношению к классу преобразований. В классе периодических функций перенос осей t=t’+b не должны менять в представлении функции того, что не зависит от системы координат. Непосредственно видно, что коэффициенты Фурье ak и bk не обладают этими свойствами и меняются при сдвиге оси, то есть когда изменяется начало отсчёта времени. Полагая t=t’+b и используя периодичность f(t), чтобы сдвинуть в интеграле пределы получаем: {21}


Аналогично {22}

Хотя ak и bk не инвариантны, величина {23}

очевидно, инвариантна. Величину {24} называют мощностью частоты k и изображают в виде дискретного спектра мощности.

В конце работы мы можем видеть в графики двух наиболее важных характеристик импульса: график огибающей спектра прямоугольного импульса и график фазового сдвига гармоник.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Россия, как может, так и не вмешивается во внутренние дела Украины.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Теория многочленной аппроксимации", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru