Диплом: Свойства усредненной функции с сильной осцилляцией - текст диплома. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Диплом

Свойства усредненной функции с сильной осцилляцией

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Дипломная работа
Язык диплома: Русский
Дата добавления:   
 
Скачать
Архив Zip, 132 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы



Министерство образования Российской Федерации

Башкирский государственный педагогический университет



Кафедра математического анализа







Дипломная квалификационная работа

Автор: Гарипов Ильгиз.

Тема: Свойства усредненной функции с сильной осцилляцией.









К защите допущен ____________

Заведующий кафедрой к.ф. м. н. доцент Сафаров Т.Г.

Руководитель д.физ-мат. наук. профессор Султанаев Я.Т.





Уфа 200

1Содержание

Стр.

Введение 3

§ 1 Свойства функции . 4

§ 2 Свойства функции и ее производных. 5

2.1 5

2.2 6

2.3 где >0 7

2.4 9

§ 3 Поведение 11

3.1 11

3.2 11

3.3 12

3.4 13

§ 4 Поведение 14

4.1 14

4.2 15

4.3 15

4.4 16

Заключение 17

Литература 18




Введение

Пусть произвольная функция, определенная на , и при

Введем в рассмотрение функцию с помощью следующего равенства:

(1)

Назовем эту функцию усреднением функции

Это название оправдано так как из (1) и теоремы о среднем для интегралов можем заключить

§ 2 Свойства функции .

  1. Если , при , то при
    Доказательство:
    , ,  N >0, :


  1. (2)


  1. (3)

Дифференцируя формулу (1) по dx получаем

(4)

(5)


§ 2 Свойства функции и ее производных.

I) Рассмотрим вид функции для случаев когда :

2.1

2.2


2.3 где >0;

Разделим интеграл на два интеграла и вычислим их отдельно.


Второй интеграл не оказывает влияния на первый, так как при функция стремится к 0.

Доказательство:

Рассматривая второй интеграл, мы получаем:




Рассматривая первый интеграл, получаем:

Последние два слагаемых полученных при интегрировании содержат в произведении , то есть при возрастании x эти слагаемые будут очень быстро уменьшатся и весь интеграл при становится очень малым по сравнению с первой частью. Поэтому можно считать что при

Следовательно:


2.4.

Наложить на ограничение, такое чтобы присутствие не влияло на поведение функции.

Рассматривая полученное выражение можно заметить что

становится пренебрежительно малым по отношению к остальной части

как только . Ограничение №1

В тоже время

Становится бесконечно малым как только . Ограничение №2

Раскрывая в оставшейся части скобки, по Биному Ньютона получаем, что

должен быть очень малым при то есть

так как ограниченная функция, к 0 должен стремится .

Ограничение №3

Учитывая ограничения 1, 2, 3 получаем:

Следовательно, ограничение на удовлетворяющее поставленной задаче, при котором присутствие не влияет на поведение функции .


§ 3 Рассмотрим поведение функции для случаев:

3.1)

3.2)


3.3)

Вычислим отдельно интегральное выражение, стоящее в числителе:

=

=

рассматривая пределы при видим что на поведение функции оказывает влияние только главный член

Поведение данной функции при эквивалентно поведению функции

(*)

Вычислим интеграл в знаменателе:

=

(**)

Учитывая (*)и (**) получаем

Следовательно, по формуле (2) получаем


3.4

Отдельно вычислим числитель и знаменатель:

По ранее доказанному в пункте 2.4 мы можем сказать что второй интеграл не оказывает влияния на поведение функции. Поэтому мы можем утверждать, что числитель эквивалентен выражению:

Вычислим знаменатель:

Разделив интеграл на 2 интеграла, мы получаем:

По пункту 2.4 можем вывести что второй интеграл не влияет на поведение функции при

Следовательно, знаменатель:


§4. Рассмотрим поведение второй производной

Для облегчения вычислений введем обозначения:

При этом формула для примет вид (6)

4.1

Виду того, что d(x) очень мал то будет несравним с d(x) т.е.


4.2

используя равенства, полученные в пункте 2.2 и 3.2, преобразуя данное равенство, приходим к выражению:

(Все выкладки приводить не буду в виду их громоздкости и сложности для восприятия. Добавлю только что все выкладки, примененные в данном пункте полностью повторяют ограничения и эквивалентные выражения, использованные в пунктах 2.2 и 3.2).

Отсюда следует что


4.3

Используя данные, полученные в п.3.3 получаем что

Возвращаясь к п. 3.3 находим:

Вычисляя по формуле 6, получаем:

и


4.4

и



Заключение

В результате проведенного исследования поведения усредненной функции в случае осциллирующих коэфициентов, получены данные приведенные в следующей таблице:

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Вроде бы по смыслу фразы равнозначные, но лучше уж услышать "Я тебя никогда не забуду!", чем "Я тебя запомнил!"
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, диплом по математике "Свойства усредненной функции с сильной осцилляцией", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru