Реферат: Решение тригонометрических неравенств - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Решение тригонометрических неравенств

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 21 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы





Ставропольский Государственный Университет











РЕФЕРАТ

по теме:

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ

НЕРАВЕНСТВ








работу выполнил:

студент Ставропольского

Государственного Университета

IV курса, Физ-Мат Факультета,

отделения МИИТ, гр. ”Б”

Неботов Виталий Дмитриевич









Ставрополь 1997 г.







СОДЕРЖАНИЕ :





Стр.


1. Вступительное слово....................................................................................3

2. Этапы “большого пути”...............................................................................3

3. Тригонометрические отношения.................................................................3

4. Тригонометрические функции.....................................................................3

5. Тригонометрические уравнения...................................................................3

6. Тригонометрические неравенства................................................................3

7. Способы решения тригонометрических неравенств...................................4

8. В помощь начинающему ..............................................................................5

9. Заключение....................................................................................................5

10. Список использованной литературы..........................................................6




















Решение тригонометрических неравенств стоит в одном ряду с такими важными темами, как решение числовых неравенств и решение систем неравенств с одной переменной. Исторически сложилось, что тригонометрическим уравнениям и неравенствам уделялось особое место в школьном курсе. Еще греки, на заре человечества, считали тригонометрию важнейшей из наук, ибо геометрия - царица математики, а тригонометрия - царица геометрии. Поэтому и мы, не оспаривая древних греков, будем считать тригонометрию одним из важнейших разделов школьного курса, да и всей математической науки в целом.

С чего же начинается обучение решению тригонометрических неравенств в школе? Естественно, с самих тригонометрических функций. Сначала даются сами отношения sin x, cos x, tg x и ctg x. Делается это на конкретных примерах рассматриваемых треугольников. Затем делается важный переход от синуса и косинуса в прямоугольном треугольнике к этим же отношениям, но уже в произвольном угле. Sin и cos освобождаются от конкретной геометрической привязки и эти понятия становятся шире.

Следующим этапом введения понятий sin x, cos x, tg x и ctg x является рассмотрение функциональных зависимостей или попросту функций y = sin x, y = cos x, y = tg x и y = ctg x соответственно. На этом этапе даются все основные свойства этих функций, рассматриваются области определения и значений, промежутки знакопостоянства, и главное - графики этих функций. Анализ функции нельзя считать полным, так как еще не усвоен и не применялся аппарат дифференцирования, но для решений тригонометрических неравенств почва уже подготовлена и ребята хорошо “вооружены” теоретическими знаниями.

Наконец последний подготовительный этап “большого пути” - решение тригонометрических уравнений. Здесь отрабатываются последние нюансы, ребенок учится оперировать сложными тригонометрическими конструкциями, но главное, именно сейчас даются основные тригонометрические тождества и производные от них. Помощь этого тригонометрического аппарата трудно переоценить. Знаниями полученными здесь и сейчас ученики смогут пользоваться всю оставшуюся жизнь. Мощь блока тригонометрических тождеств поистине потрясает, так как с его помощью управляться с громоздкими, “трехэтажными” тригонометрическими выражениями становится также просто, как и с алюминиевой вилкой.

И только теперь, хорошо освоив все предыдущие разделы ученики подходят к нашей теме, а именно решение тригонометрических неравенств. Естественно начинают решение таких неравенств с самых простейших: sin x > a, sin x < a; cos x > a, cos x < a; tg x > a, tg x < a. Затем, освоив данные неравенства, постепенно переходят к более сложным неравенствам, содержащим несколько функций одновременно, содержащим разные функции в разных степенях и ко всевозможным их комбинациям. Естественно, для мальчиков и девочек 13-14 лет этот материал простым и легким не назовешь, он требует аналитического склада ума, умения мыслить абстрактно, а главное быстро. Поэтому изучение этого материала без какого-либо дополнительного инструментария было бы весьма и весьма затруднительным. Но, к счастью, это не так: был найден простой и удобный, а главное наглядный инструментарий позволяющий легко решать такие простейшие тригонометрические неравенства. На самом деле их даже два.

У внимательного читателя может возникнуть резонный вопрос, ради чего было огород городить, если с помощью вашего “удивительного” инструментария можно решать только простейшие неравенства, которые и так, как-нибудь можно решить. На это можно ответить, что любое тригонометрическое неравенство, каким бы большим и запутанным оно не казалось вначале, можно с помощью тождественных преобразований свести к простейшему (нескольким простейшим) тригонометрическим неравенствам. Затем мы можем решить их либо используя тригонометрический круг, либо сам график полученной функции.

В действительности в школьном курсе нет жесткой регламентации каким из указанных двух способов пользоваться при решении тригонометрических неравенств. Здесь выбор полностью за данным конкретным преподавателем. Учителя вольны использовать как один, так и другой способы, но мне кажется, что тригонометрический круг все же нагляднее и поняв один раз его принцип начинаешь пользоваться им также свободно как и дышать, к тому же он просто компактнее и занимает в тетради меньше места. По-видимому идеальным вариантом является совместное, взаимодополняющее использование обоих выше перечисленных методов решения простейших тригонометрических неравенств.

Итак, тригонометрический круг единичного радиуса (вы можете видеть его изображение рядом). Почему его радиус взят за единицу, а не скажем за двойку или пятерку. Ответ очевиден: угол здесь изображается радиусом и отрезком оси ОХ, и если мы опустим перпендикуляр из точки пересечения радиуса с окружностью на ось ОХ, по получим прямоугольный треугольник. В тригонометрическом круге длина отрезка ОУ принята за sin x, a длина отрезка ОХ за cos x. По теореме Пифагора ОХ2 + ОУ2 = R2. Таким образом, подставив синус и косинус получим: sin2x + cos2x = 1. Вот так мы и вышли на основное тригонометрическое тождество. Именно поэтому тригонометрический круг единичного радиуса.

Как я уже сказал, мы, с помощью тригонометрических тождеств, приводим неравенство к простейшему виду, а затем решаем его используя тригонометрический круг или график. Для успешного решения необходимо также знать следующее:



О косинусе можно сказать следующее:



И наконец тангенс, вобравший в себя все самое лучшее из синуса и косинуса:


Вооруженный такими знаниями, не только школьник, но и простой человек, никогда не учившийся в школе сможет быстро освоить и без труда решать эти “загадочные” тригонометрические неравенства.






Список использованной литературы:



1. В. С. Крамор, Повторяем и систематизируем школьный курс

алгебры и начал анализа, Москва, Просвещение, 1990 г.

2. С. А. Теляковский, Алгебра, учебник для 8 класса средней школы,

Москва, Просвещение, 1987 г.

3. Личные заметки и наблюдения автора.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Ничто так не украшает спящую красивую девушку, как её беспорядочно разбросанное нижнее бельё в моей комнате.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Решение тригонометрических неравенств", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru