Реферат: Поперечные сечения и их геометрические характеристики - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Поперечные сечения и их геометрические характеристики

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 72 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы





Поперечные сечения и их геометрические характеристики

Статические моменты сечения


Возьмем некоторое поперечное се­чение бруса (рис. 1). Свяжем его с системой координат х, у и рас­смотрим два следующих интеграла:


Рис. 1





(1)






где индекс F у знака интеграла указывает на то, что интегрирование ведется по всей площади сечения. Каждый из интегралов представ­ляет собой сумму произведений, элементарных площадок dF на рас­стояние до соответствующей оси или у). Первый интеграл называется статическим моментом сечения относительно оси х, а второй — относительно оси у. Размерность статического момента см3. При параллельном переносе осей величины статических моментов меняются. Рассмотрим две пары параллельных осей, x1, y1 и x2, y2.Пусть расстояние между осями x1 и x2 равно b, а между осями y2 и y2 равно а (рис. 2). Положим, что площадь сечения F и статические моменты относительно осей x1 и y1, т. е. Sx1, и Sy1 заданы. Требуется определить Sx2 и Sy2.

Очевидно, х2 = x1 — а, y2 = y1 — b. Искомые статические мо­менты будут равны


или


Таким образом, при параллельном переносе осей статический момент меняется на величину, равную произведению площади F на расстояние между осями.

Рассмотрим более детально, например, первое из полученных выра­жений:


Величина b может быть любой: как положительной, так и отрицательной. Поэтому ее всегда можно подобрать (причем единственным образом) так, чтобы произведение bF было равно Sx1.Тогда статический момент Sx2, относительно оси x2 обращается в нуль.

Ось, относительно которой статический момент равен нулю, называется центральной. Среди семейства параллельных осей она является единственной, и расстояние до этой оси от некоторой, про­извольно взятой, оси х1 равно


Рис. 2



Аналогично для другого семейства параллельных осей





Точка пересечения центральных осей называется центром тяже­сти сечения. Путем поворота осей можно показать, что статический момент относительно любой оси, проходящей через центр тяжести, равен нулю.

Нетрудно установить тождественность данного определения и обычного определения центра тяжести как точки приложения равно­действующих сил веса. Если уподобить рассмотренное сечение одно­родной пластинке, то сила веса пластинки во всех точках будет пропорциональна элементарной площади dF, а момент сил веса относительно некоторой оси — пропорционален статическому мо­менту. Этот момент сил веса относительно оси, проходящей через центр тяжести, равен нулю. В нуль обращается, следовательно, и статический момент относительно центральной оси.


Моменты инерции сечения


В дополнение к статическим моментам рассмотрим еще три сле­дующих интеграла:


(2)



Через х и у обозначены текущие координаты эле­ментарной площадки dF в произвольно взятой системе координат х, y. Первые два интеграла называются осевыми момен­тами инерции сечения относительно осей х и y соответственно. Третий интеграл называется центробежным моментом инерции сечения относительно осей х, у. Размерность моментов инерции см4.

Осевые моменты инерции всегда положительны, поскольку поло­жительной считается площадь dF. Центробежный момент инерции может быть как положительным, так и отрицательным, в зависи­мости от расположения сечения относительно осей х, у.

Выведем формулы преобразования моментов инерции при парал­лельном переносе осей. Будем считать, что нам заданы моменты инерции и статические моменты относительно осей х1 и y1. Требуется определить моменты инерции относительно осей x2 и y2



(3)



Подставляя сюда х2 = x1а и y2 = y1b и раскрывая скобки (согласно (1) и (2)) находим









Если оси x1 и y1 — центральные, то Sx1 = Sy1 = 0. Тогда




(4)





Следовательно, при параллельном переносе осей (если одна из осей — центральная) осевые моменты инерции меняются на величину, равную произведению площади на квадрат расстояния между осями.

Из первых двух формул (4) следует, что в семействе парал­лельных осей минимальный момент инерции получается относи­тельно центральной оси = 0 или Ь = 0). Поэтому легко запом­нить, что при переходе от центральных осей к нецентральным осе­вые моменты инерции увеличиваются и величины a2F и b2F следует к моментам инерции прибавлять, а при переходе от нецентральных осей к центральным — вычитать.

При определении центробежного момента инерции по формулам (4) следует учитывать знак величин а и b. Можно, однако, и сразу установить, в какую сторону меняется величина Jxy при параллельном пере­носе осей. Для этого следует иметь в виду, что часть площади, находя­щаяся в I и III квадрантах системы координат x1y1, дает поло­жительное значение центробежного момента, а части, находящиеся в II и IV квадрантах, дают отрицательные значения. Поэтому при переносе осей проще всего устанавливать знак сла­гаемого abF в соответствии с тем, ка­кие из четырех слагаемых площадей увеличиваются и какие — уменьшают­ся.

ГЛАВНЫЕ ОСИ И ГЛАВНЫЕ МОМЕНТЫ ИНЕРЦИИ


Рис. 3

Посмотрим, как изменяют­ся моменты инерции при по­вороте осей координат. Поло­жим, даны моменты инерции некоторого сечения относительно осей х, у (не обязательно центральных). Требуется определить Ju, Jv, Juv моменты инерции относительно осей и, v, повернутых относительно первой системы на угол  (рис. 3).

Проектируем замкнутый четырехугольник ОАВСО на оси и и v. Так как проекция ломаной линии равна проекции замыкающей, на­ходим:


u = y sin  +x cos , v = y cos  — x sin 

В выражениях (3), подставив вместо x1 и y1 соответственно u и v, исключаем u и v










откуда





(5)







Рассмотрим два первых уравнения. Складывая их почленно, получим, что сумма осевых моментов инерции относительно двух взаимно перпендикулярных осей не зависит от угла  и при пово­роте осей остается постоянной. При этом


x2 + y2 = 2


где  — расстояние от начала координат до элементарной площадки (рис. 3). Таким образом,


Jx + Jy = Jp


где Jp полярный момент инерции





величина которого, естественно, не зависит от поворота осей ху.

С изменением угла поворота осей  каждая из величин Ju и Jv меняется, а сумма их остается неизменной. Следовательно, сущест­вует такое , при котором один из моментов инерции достигает своего максимального значения, в то время как другой момент инер­ции принимает минимальное значение.

Дифференцируя выражение Ju (5) по  и приравнивая произ­водную нулю, находим


(6)



При этом значении угла  один из осевых моментов будет наиболь­шим, а другой — наименьшим. Одновременно центробежный момент инерции Juv при указанном угле  обращается в нуль, что легко устанавливается из третьей формулы (5).

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты принимают экстремальные значения, назы­ваются главными осями. Если они к тому же являются централь­ными, то тогда они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции. Для определения этого первые две формулы (5) перепишем в виде










Далее исключаем при помощи выражения (6) угол . Тогда








Верхний знак соответствует максимальному моменту инерции, а нижний — минимальному. После того как сечение вычерчено в масштабе и на чертеже показано положение главных осей, нетрудно установить, которой из двух осей соответствует максимальный и которой — минимальный мо­мент инерции.

Если сечение имеет ось симметрии, то эта ось всегда будет главной .Центробежный момент инерции части сечения, расположенной по одну сторону от оси, будет равен моменту части, расположенной по другую сторону, но противоположен ему по знаку. Сле­довательно, Jху= 0 и оси х и у являются глав­ными.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Девочки, если мужчина просит вас остаться, всегда уточняйте: остаться в девках, дурах, друзьями или до утра.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Поперечные сечения и их геометрические характеристики", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru