Реферат: Основы дефференцирования - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Основы дефференцирования

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 136 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы







САМОСТОЯТЕЛЬНАЯ РАБОТА


по дисциплине: «Математика»

по теме: «Правила Дефферинцирования»












Содержание:

Основные правила дифференцирования…………………………………….3

Логарифмическое дифференцирование……………………………………..4

Показательно-степенная функция и ее дифференцирование………………5

Таблица производных…………………………………………………………6

Производная обратных функций……………………………………………..8

Понятие дифференциала функции. Связь между дифференциалом и производной……………………………………………………………………9

Геометрический смысл дифференциала……………………………………11

Теорема об инвариантности дифференциала………………………………12

Применение дифференциала к приближенным вычислениям…………….13

Список литературы…………………………………………………………...15



Основные правила дифференцирования


Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.


1) (u ? v)? = u? ? v?

2) (u?v)? = u?v? + u??v

3), если v ? 0


Эти правила могут быть легко доказаны на основе теорем о пределах.

Производные основных элементарных функций:


1)С? = 0; 9) 

2)(xm)? = mxm-1; 10) 

3)  11) 

4)  12) 

5)  13) 

6)  14) 

7) 15) 

8)  16) 


Логарифмическое дифференцирование


Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y' из уравнения y=f(x), то можно:

  1. Прологарифмировать обе части уравнения (по основанию е) ln y = ln f(x) = j(x).

  2. Продифференцировать обе части равенства, считая ln y сложной функцией от переменной x: .

  3. Выразить y' = y·j'(x) = f(x)·(lnx)'.

Примеры.

  1. y = xa – степенная функция с произвольным показателем.


.

  1. 













Показательно-степенная функция и ее дифференцирование


Показательно-степенной функцией называется функция вида y = uv, где u=u(x), v=v(x).

Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.






Примеры


  1. 

  2. .














Таблица производных


Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее. Всюду будем полагать u=u(x), v=v(x), С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

  1. .

  2. .

  3. .

  4. .

  5. .

а).

б) .

  1. .

  2. .

.

  1. 

  2. .

  3. .

  4. .

  5. .

  6. .

  7. .

  8. .

  9. .

  10. .


Примеры


  1. 

  2. 

  3. . Найти y'(–1).






Производная обратных функций


Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке.

Для решения этой задачи дифференцируем функцию x = g(y) по х:




т.к. g?(y) ? 0 





т.е. производная обратной функции обратна по величине производной данной функции.

Пример. Найти формулу для производной функции arctg.

Функция arctg является функцией, обратной функции tg, т.е. ее производная может быть найдена следующим образом:



Известно, что 

По приведенной выше формуле получаем:




Т.к.  то можно записать окончательную формулу для производной арктангенса:



Понятие дифференциала функции. Связь между дифференциалом и производной

Пусть функция y=f(x) дифференцируема на отрезке [a; b]. Производная этой функции в некоторой точке х0 ? [a; b] определяется равенством



Следовательно, по свойству предела



Умножая все члены полученного равенства на ?x, получим:

?y = f '(x0)·?x + a·?x.

Итак, бесконечно малое приращение ?y дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f '(х0) ? 0) главная часть приращения, линейная относительно ?x, а второе – бесконечно малая величина более высокого порядка, чем ?x. Главную часть приращения функции, т.е. f '(х0)·?x называют дифференциалом функции в точке х0 и обозначают через dy.

Таким образом, если функция y=f(x) имеет производную f '(x) в точке x, то произведение производной f '(x) на приращение ?x аргумента называют дифференциалом функции и обозначают:

dy = f '(x)·?x

(1)


Найдем дифференциал функции y= x. В этом случае y' = (x)' = 1 и, следовательно, dy=dx=?x. Таким образом, дифференциал dxнезависимой переменной xсовпадает с ее приращением ?x. Поэтому формулу (1) мы можем записать так:


dy = f '(x)dx


Но из этого соотношения следует, что . Следовательно, производную f '(x) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции ?y = f(x+?x) – f(x) можно представить в виде ?y = A·?x + ?, где ? – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x, то эта функция имеет производную в точке x и f '(x)=А.

Действительно, имеем , и так как при ?x?0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:

  1. 

  2. .





Геометрический смысл дифференциала



Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через ? угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение ?x, тогда функция получит приращение ?y = NM1. Значениям x+?x и y+?y на кривой y = f(x) будет соответствовать точка

M1(x+?x; y+?y).

Из ?MNT находим NT=MN·tg ?. Т.к. tg ? = f '(x), а MN = ?x, то NT = f '(x)·?x. Но по определению дифференциала dy=f '(x)·?x, поэтому dy = NT.

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и ?x, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.


Теорема об инвариантности дифференциала


Ранее мы видели, что если u является независимой переменной, то дифференциал функции y=f '(u) имеет вид dy = f '(u)du.

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)). Тогда по правилу дифференцирования сложной функции:


.


Следовательно, по определению


,


но g'(x)dx= du, поэтому dy= f'(u)du.

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u), для которой u=g(x), имеет тот же вид dy=f'(u)du, какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала.

Пример. . Найти dy.

Учитывая свойство инвариантности дифференциала, находим


.


Применение дифференциала к приближенным вычислениям


Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции ?yможно представить в виде суммы ?y=dy+?·?x, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых ?x вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством ?y?dyили ?y»f'(x0)·?x.

Т.к., по определению, ?y = f(x) – f(x0), то f(x) – f(x0)?f'(x0)·?x.

Откуда


f(x) ? f(x0) + f'(x0)·?x


Примеры:

  1. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. ?y), когда x изменяется от 3 до 3,01.

Имеем ?y?dy=f'(x)·?x.

f'(x)=2x – 2 ,f'(3)=4, ?x=0,01.

Поэтому ?y ? 4·0,01 = 0,04.

  1. Вычислить приближенно значение функции в точке x = 17.

Пусть x0= 16.

Тогда ?x = x – x0= 17 – 16 = 1,


,

.

Таким образом, .

  1. Вычислить ln 0,99.

Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.

Положим x0 = 1. Тогда ?x = – 0,01, f(x0)=0.

, f '(1)=1.Поэтому f(0,99) ? 0 – 0,01 = – 0,01.


Список Литератутры

  1. Выгодский М.Я. Справочник по высшей математике.  М.: Джангар, 2000.  864 с.

  2. Гордон В.А., Шмаркова Л.И. Краткий курс математики / Учебное пособие. – Орёл: ОрёлГТУ, 2000. – 96 с.

  3. Демидович Б.П. Сборник задач и упражнений по математическому анализу: М.: Наука, 1996.

  4. Мордкович А.Г Алгебра 7-11. 2001-2003г




1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Приемщик ломбарда первым узнал, что их квартиру обокрали.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Основы дефференцирования", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru