Реферат: Образцы исследования элементарных функций, содержащих обратные тригонометрические функции - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Образцы исследования элементарных функций, содержащих обратные тригонометрические функции

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 234 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




Образцы исследования элементарных функций, содержащих обратные тригонометрические функции


Примеры

Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.

Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.

Решение: Рассмотрим 1-ю функцию

y


y = arcsin(1/x)

y


Д(f): | 1/x | ? 1 ,

-?/2

?/2

| x | ? 1 ,

( - ? ; -1 ] U [ 1; + ? )

-1



0

1

x

y

x


Функция нечетная




( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;?/2] )


Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-?/2; ?/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда

y

y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x)

?


Д(f): ( - ? ; -1 ] U [ 1; + ? )

?/2




0

1

-1




Пример №2. Исследовать функцию y=arccos(x2).

Решение:

?/2

Д(f): [-1;1]

Четная

f(x) убывает на пр. [0;1]

f(x) возрастает на пр. [-1;0]

0

-1

x

1


Пример №3. Исследовать функцию y=arccos2(x).

Решение: Пусть z = arccos(x), тогда y = z2

f(z) убывает на пр. [-1;1] от ? до 0.

f(y) убывает на пр. [-1;1] от ?2 до 0.






x


0

1

-1



Пример №4. Исследовать функцию y=arctg(1/(x2-1))

Решение:

Д(f): ( - ? ; -1 ) U ( -1; 1 ) U ( 1; +? )

Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:

[ 0 ; 1 ) и ( 1 ; +? )

y


X

?/2

0

< x <

1

< x <

+?

u=1/(x2-1)

1

-1

-1

?

+ ?

- ?

?

0

y=arctg(u)

0

x

- ?/4

?

?/2

- ?/2

?

0

-?/2

-?/4




Тригонометрические операции над аркфункциями

Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.

В силу определения аркфункций:

sin(arcsin(x)) = x , cos(arccos(x)) = x

(справедливо только для x є [-1;1] )

tg(arctg(x)) = x , ctg(arcctg(x)) = x

(справедливо при любых x )

Графическое различие между функциями, заданными формулами:


y=x и y=sin(arcsin(x))

x

y

0






x

y

0

1

-1





Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.


Аргумент


функция

arcsin(x)

arccos(x)

arctg(x)

arcctg(x)

sin

sin(arcsin(x))=x

cos

x

tg

x

1 / x

ctg

1 / x

x

Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:

  1. Т.к. cos2x + sin2x = 1 и ? = arcsin(x)


Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.

Значит, имеем

  1. Из тождества следует:

  1. Имеем

Ниже приведены образцы выполнения различных преобразований посредством выведения формул.

Пример №1. Преобразовать выражение

Решение: Применяем формулу , имеем:

Пример №2. Подобным же образом устанавливается справедливость тождеств:

Пример №3. Пользуясь

Пример №4. Аналогично можно доказать следующие тождества:

Пример №5. Положив в формулах

, и

, получим:

,

Пример №6. Преобразуем

Положив в формуле ,

Получим:

Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.

Соотношения между аркфункциями

Соотношения первого рода – соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.

Теорема. При всех допустимых х имеют место тождества:


arcsin(x)

arccos(x)


x

y

1

-1




Соотношения второго рода – соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).

Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.

Пусть, например, рассматривается дуга ?, заключенная в интервале (-?/2; ?/2).

Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sin? и заключена, так же как и ?, в интервале (-?/2; ?/2), следовательно

Аналогично можно дугу ? представить в виде арктангенса:

А если бы дуга ? была заключена в интервале ( 0 ; ? ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:

Так, например:

Аналогично:

Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).

  1. Выражение через арктангенс.

Пусть , тогда

Дуга , по определению арктангенса, имеет тангенс, равный и расположена в интервале (-?/2; ?/2).

Дуга имеет тот же тангенс и расположена в том же интервале (-?/2; ?/2).

Следовательно,

(1)

(в интервале ( -1 : 1 )


  1. Выражение через арксинус.

Т.к. , то (2)

в интервале


  1. Выражение арккосинуса через арккотангенс. Из равенства следует тождество

(3)

Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,


Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.

Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -?/2 до 0, либо промежутку от ?/2 до ? и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.

Так, например, дуга не может быть значением арксинуса. В этом случае

Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.

  1. Выражение арксинуса через арккосинус.

Пусть , если , то . Дуга имеет косинус, равный , а поэтому

При это равенство выполняться не может. В самом деле, в этом случае

, а для функции имеем:

так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.

Расположение рассматриваемых дуг пояснено на рисунке:












Х>0 X<0>

При отрицательных значениях Х имеем Х<0, а при положительных X>0, и

Таким образом, имеем окончательно:

если , (4)

, если




График функции

1

-1



Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:

, если

, если

  1. Аналогично установим, что при имеем:

, если же , то

Таким образом:

, если (5)

, если

  1. Выражение арктангенса через арккосинус. Из соотношения

при имеем:

Если же х<0, то

Итак,

, если (6)

, если


  1. Выражение арккосинуса через арктангенс. Если , то

При имеем:

Итак,

, если (7)

, если

  1. Выражение арктангенса через арккотангенс.

, если х>0 (8)

,если x<0>

При x>0 равенство (8) легко установить; если же x<0, то

.

  1. Выражение арксинуса через арккотангенс.

, если (9)

, если

  1. Выражение арккотангенса через арксинус.

, если 0(10)

, если х<0>

  1. Выражение арккотангенса через арктангенс.

, если x>0 (11)

, если x<0>

Примеры:

Пример №1. Исследовать функцию

Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:

Y


y= 0 , если x>0

-? , если x<0>

X


На чертеже изображен график

данной функции



Пример №2. Исследовать функцию

Решение: Первое слагаемое определено для значений , второе – для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).

Т.к. , то получаем

,

откуда:

на сегменте [0;1]

Пример №3. Исследовать функцию

Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).

Приняв во внимание равенство

, если

, если

получим:

y = 0 , если

, если

Выполнение обратных тригонометрических операций над тригонометрическими функциями.

При преобразовании выражений вида

следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:

Согласно определению арксинуса, y – есть дуга правой полуокружности (замкнутая), синус которой равен sin x;

и

Областью определения функции служит интервал , так как при всех действительных значениях х значение промежуточного аргумента содержится на сегменте . При произвольном действительном х значение y (в общем случае) отлично от значения х.

Так, например, при х=?/6 имеем:

но при х=5?/6

В силу периодичности синуса функция arcsin x также является периодической с периодом 2?, поэтому достаточно исследовать ее на сегменте [-?/2; 3?/2] величиной 2?.

Если значение х принадлежит сегменту [-?/2; ?/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.

Если значение х принадлежит сегменту [?/2; 3?/2], то в этом случае дуга ?-х принадлежит сегменту [-?/2; ?/2]; и, так как

, то имеем y=?-х;

в этом промежутке график функции совпадает с прямой линией y=?-х. Если значение х принадлежит сегменту [3?/2; 5?/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:

y=х-2?

Если значение х принадлежит сегменту [-3?/2; -?/2], то

y=-?-х

Если значение х принадлежит сегменту [-5?/2; -3?/2], то

y=х+2?

Вообще, если , то

y=х-2?k

и если , то

y=(?-х)+2?k


График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.





-?

?

X

Y





Рассмотрим функцию

Согласно определению арккосинуса, имеем:

cos y = cos x, где

Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2?. Если значение Х принадлежит сегменту [0; ?], то y = x. Если х принадлежит сегменту [?; 2?], то дуга 2?-х принадлежит сегменту [0; ?] и , поэтому:

Следовательно, на сегменте [?; 2?] имеем y = 2? - x

Если х принадлежит сегменту [2?; 3?], то y = x - 2?

Если х принадлежит сегменту [3?; 4?], то y = 4? – x


Вообще, если , то y = x - 2?k

Если же , то y = -x + ?k

Графиком функции является ломаная линия









-?

?

0

Х

Y




Формулы сложения

Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.

Сказанное пояснено ниже на числовых примерах.

Примеры.

Пример №1. Преобразовать в арксинус сумму

Решение: эта сумма является суммой двух дуг ? и ?, где

;

В данном случае (т.к. , а следовательно, ), а также , поэтому .

Вычислив синус дуги ?, получим:

Т.к. сумма ? заключена на сегменте [-?/2; ?/2], то

Пример №2. Представить дугу ?, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:

Откуда

Пример №3. Представить посредством арктангенса сумму

Решение: в данном случае (в отличие от предыдущего) дуга ? оканчивается во второй четверти, т.к. , а . Вычисляем

В рассматриваемом примере , так как дуги ? и заключены в различных интервалах,

, а

В данном случае


Пример №4. Представить дугу ?, рассмотренную в предыдущем примере, в виде арккосинуса.

Решение: имеем


Обе дуги ? и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:

Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.


Формулы сложения аркфункций от положительных аргументов.

Пусть ? и ? – две дуги, заключенные в промежутке от 0 до ?/2 (первая четверть):

, и

Сумма ? + ? заключена в верхней полуокружности , следовательно, ее можно представить в виде аркфункции, значение которой выбирается в том же интервале, т.е. в виде арккосинуса, а также в виде арккотангенса:

;

Разность ? – ? заключена в правой полуокружности:

Следовательно, она может быть представлена в виде арксинуса, а также в виде арктангенса:

;

Так как значение всякой аркфункции от положительного аргумента заключено в интервале (0; ?/2) то сумму двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арккотангенса, а разность двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арктангенса.

Ниже приведены образцы соответствующих преобразований.

  1. Преобразуем в арккосинус , где и

Имеем:

Откуда

  1. Аналогично

, где 0 < x < 1, 0 < y < 1

, где 0 < x < 1, 0 < y < 1


Формулы сложения аркфункций от произвольных аргументов.

  1. Выразить сумму через арксинус

По определению арксинуса

и ,

откуда

Для дуги ? возможны следующие три случая:

Случай 1:

Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.

В самом деле, при и , имеем:

, и ,

откуда

При x > 0, y > 0 для дуги ? имеет место одна из следующих двух систем неравенств:

а) б)

Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:

в случае а) и в случае б)

В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.

Вычислив , получим:

При x > 0, y > 0 наличие случая 1 означает выполнения неравенства а) т.е. или

Откуда

и, следовательно,

Наличие случая 1 при x < 0, y < 0 означает выполнение неравенств

;

но тогда для положительных аргументов –x и –y имеет место случай 1, а потому

или

Случай 2.

В этом случае x > 0, y > 0, т.е. выполняется неравенство б); из условия получим

Случай 3.

Этот случай имеет место при x < 0, y < 0, и

Изменив знаки на противоположные придем к предыдущему случаю:

откуда

Дуги ? и имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1 ;

в случае 2 и в случае 3 .

Итак, имеем окончательно:

, или

; x > 0, y > 0, и (1)

; x < 0, y < 0, и


Пример:

;


2. Заменив в (1) x на –x получим:

, или

; x > 0, y > 0, и (2)

; x < 0, y < 0, и

3. Выразить сумму через арккосинус

и

имеем

Возможны следующие два случая.

Случай 1: если , то

Приняв во внимание, что обе дуги и расположены в промежутке [0;?] и что в этом промежутке косинус убывает, получим

и следовательно, , откуда

Случай 2: . Если , то

,

откуда при помощи рассуждений, аналогичных предыдущим, получим . Из сопоставления результатов следует, что случай 1 имеет место, если , а случай 2, если

.

Из равенства следует, что дуги

и имеют одинаковый косинус.

В случае 1 , в случае 2 , следовательно,


,

, (3)


4. Аналогично

,

, (4)

пример:


5.

; xy < 1

; x > 1, xy > 1 (5)

; x < 0, xy > 1

При xy=1 не имеет смысла


6.

; xy > -1

; x > 0, xy < -1 (6)

; x < 0, xy < -1


7.

;

; (7)

;

8.

; (8)

;


9.

;

; x > 1 (9)

; x < -1


10. (10)

(11)

, если (12)

, если

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Любовь не продаётся! Но финансовая поддержка приветствуется.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Образцы исследования элементарных функций, содержащих обратные тригонометрические функции", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru