Реферат: Интеграл по комплексной переменной - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Интеграл по комплексной переменной

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 186 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




Интеграл по комплексной переменной.

Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.

Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.

Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной ?, используя параметрическое задание кривой С зададим ??t??и?? (t), где ??и???являются кусочно-гладкими кривыми от действительной переменной t. Пусть ?<= t<=???причем ??и ??могут быть бесконечными числами .?

?Пусть?? и ??удовлетворяют условию : [?‘(t)]2 + [?‘(t)]2 ? 0. Очевидно, что задание координат ? =??t??и???? (t), равносильно заданию комплексной функции ? (t)= ??(t) ??i?(t).

Пусть в каждой точке ? (t) кривой С определена некоторая функция f (? ). Разобьем кривую С на n – частичных дуг точками деления ?0 , ?1 , ?2 , …, ??n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.

?? i =? i – ? i-1. Составим интегрируемую функцию S = ?f (?*)?? i . (1)
где ?*– производная точки этой дуги.

Если при стремлении max |?? i |? 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек ? i , то этот предел называется интегралом от функции f (? ) по кривой С.

(2)

f (?i* ) = u (Pi*) + iv (Pi*) (3)

где ?? i = ???(t) ??i??(t) (??(t) и??(t) - действительные числа)

Подставив (3) в (1) получим :


(4)


Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при ?? и ?? ??0 и предполагая, что данные пределы существуют, получаем :


(5)


Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (? ).

Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :








О ограниченности интеграла.

При этом z = ? (? ).


7.) Пусть Cp – окружность радиуса ?, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : ? = Z0 + ??ei?, 0 ? ? ? 2?, d? = i??ei? d? .

Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.


ТЕОРЕМА КОШИ.

В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :

Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:


( 8 )


ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Т.к. f(? ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:

Аналогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :


ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(?) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.


TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

Пусть f (?) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (?) непрерывна в замкнутой области G, тогда :


, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.




Неопределенный интеграл.

Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф? (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :

( 9)



Это аналог формулы Ньютона-Лейбница.


Интеграл Коши. Вывод формулы Коши.

Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию ? (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур ? с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и ?. Согласно теореме Коши имеем :


По свойствам интегралов :



(2 )

Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве ? окружность ?? с радиусом ? . Тогда:



(3)


Уравнение окружности ?? : ? = Z0 + ?ei????????? (4)

Подставив (4) в (3) получим :




( 5 )



( 6 )




(7)



Устремим ??? 0, т.е. ?? 0.