Реферат: Евклид: жизнь и сочинения - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Евклид: жизнь и сочинения

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 19 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы



Евклид: жизнь и сочинения


Спросите своего коллегу, или знакомого, или ученика: «Какая древняя книга оказала наибольшее влияние на развитие европейской цивилизации?». Не думаю, что ответы будут отличаться большим разнообразием, но вряд ли кто-нибудь вспомнит о «Началах» Евклида. А ведь именно по этой книге ( или по её обработкам ) учились все творцы современной математики: Декарт и Ферма, Ньютон и Лейбниц, Колмогоров и Понтрягин… Всех не перечислишь.

Нельзя сказать, что в течение многих веков не появлялись другие своды математических знаний, но все они забывались и вновь вытеснялись «Началами» Евклида. С 1482 г. она издавалась более 500 раз на самых различных языках.

Можно с уверенностью утверждать, что все современные так называемые точные науки выросли из древнегреческой науки, т.е. из «Началах» Евклида – самого древнего свода математических знаний, дошедшего до нашего времени.

Так кто же был Евклид? Исследователь, энциклопедист, методист? Увы, о жизни этого знаменитого учёного сохранилось крайне мало сведений. Годы его жизни относят к промежутку времени приблизительно между 365 и 300 гг. до н.э.

Известно, что Евклид был приглашён в Александрию царём Птолемеем I Сотером для организации математической школы и преподавал там математику. Известно, что он учился в платоновской Академии в Афинах.

Итак, какие же труды Евклида нам известны?

Кроме «Начал» до нас дошли, хотя и в сильно искажённом виде, трактаты «Оптика» и «Катоптрика». В «Оптике» Евклид формулирует и доказывает правило «угол падения равен углу отражения», а в «Катоптрике» он выводит, опираясь на это правило, законы отражения от выпуклых и вогнутых зеркал. В этих трактатах содержится первое в истории изложение геометрической оптики. Кроме того, Евклиду принадлежит сочинение по математической астрономии «Явления», ему также приписывается сочинение «Сечение канона» по теории музыки.

Во всех этих произведениях Евклид сначала постулирует некоторые свойства исследуемых объектов ( например, то, что свет распространяется по прямой ) и необходимые математические сведения, а затем на этой основе дедуктивно строит излагаемую теорию.

Евклиду принадлежат сочинения о конических сечениях ( т.е. эллипсе, гиперболе, параболе ) и «О поверхностных местах», которые до нас дошли.

В арабском переводе нам известно сочинение Евклида «О делении фигур»

Но главным трудом Евклида, несомненно, являются «Начала» ( в 13 книгах ). Он собрал и систематизировал современную ему математику, строго дедуктивно изложив её в этом объёмном труде.

Ниже описаны наиболее интересные, с точки зрения современной математики, достижения Евклида и его предшественников, изложенные в «Началах».


Теорема Евклида.


Предложение, о котором идёт речь, изложено в IX книге «Начал». Оно формулируется так:

множество простых чисел бесконечно.

Доказательство очень просто: если бы множество всех простых чисел было конечным, то, перемножив их все и добавив единицу, мы получили бы новое число, которое не делится ни на одно из известных простых чисел и, следовательно, простое.


Алгоритм Евклида.

Всем известен алгоритм Евклида нахождения общей меры отрезков. Он состоит в следующем.

Пусть есть два отрезка неравной длины A и В, причём, например, А больше В. Отложим отрезок В на отрезке А столько раз, сколько получится( рис. 1 ).

Тогда А=n0B + C1, где C1 < В.

Теперь берём отрезки В и C1 и повторяем с ними ту же операцию: В=n1C1 + C2, где C2 < C1 ( рис. 2 ).


А


С1

В В В



n0 раз

( рис. 1 )

В



С1 С1 С2


n1 раз.

( рис. 2 )


Повторяя эту операцию много раз, мы либо когда-нибудь получим нулевой отрезок-остаток Cm= nm+1Cm+1 + 0 отрезок Cm+1 окажется общей мерой отрезков А и В, либо процесс откладывания отрезков никогда не закончится.

В последнем случае говорят, что отрезки А и В несоизмеримы ( т.е. не имеют общей меры ). Числа n0, n1, … называются «неполными частными».

Если обнаружена общая мера величин А и В и она равна некоторой величине D, то А= ?D, B=?D и отношение А и В есть отношение ? к ?.

Интересно, что Евклид построил алгоритм отдельно для чисел ( т.е. натуральных чисел ) и отдельно для отрезков ( величин ).

Итак, алгоритм Евклида позволяет не только находить общую меру ( НОД ) двух чисел, сокращать на НОД дроби, но и «округлять» рациональные числа.


Теория отношений Евдокса.


В «Началах» изложена другая теория отношений, созданная Евдоксом. Она отвечала на вопрос: как можно сравнивать отношения чисел и что происходит с ними в результате арифметических операций?

Два отношения a/b и c/d считаются равными, если для любых натуральных чисел М, N выполняются условия:

aM > bN cM > dN,

aM = bN cM = dN,


aM < bN cM < dN.

Такой подход к сравнению отношений был революционным прорывом в построении теории действительного числа ( пока только для рациональных положительных чисел ).



Теория иррациональностей.


Видимо, именно алгоритм Евклида привёл пифагорейца к установлению несоизмеримости стороны и диагонали квадрата ( т.е. иррациональности числа ?2 ). Это открытие существенно повлияло на дальнейшее развитие и математики, и философии. Оно показало, что ложен основной принцип пифагорейцев «всё есть число». Они считали, что всякую величину можно выразить числом ( натуральным ) или отношением чисел, но оказалось, что диагональ квадрата со стороной 1 не выражалась отношением чисел.

Теэтет Афинский развил этот подход и доказал, что квадратные корни из квадратных чисел рациональны, а из неквадратных – иррациональны. Кроме того, кубические корни из кубических чисел рациональны, а из некубических – иррациональны.

Более того, он классифицировал некоторые типы иррациональностей, которые можно построить с помощью циркуля и линейки.


Геометрическая алгебра.


Важным достижением античной математики стало создание так называемой геометрической алгебры, зачатки которой имелись ещё у вавилонян.

Мы знаем, что в Древней Греции не было возможности записывать буквами алгебраические формулы и уравнения. Кроме того, большие проблемы возникали при операциях с натуральными числами. Античные математики обошли эту проблему, переведя все алгебраические выражения первой и второй степени на геометрический язык. Все построения были планиметрическими.

Видимо, именно алгебраическими потребностями объясняется столь бурное развитие планиметрии в античности.


Платоновы тела.


В последней, XIII книге «Начал» описываются построение и свойства правильных многогранников – тетраэдра, гексаэдра, октаэдра, додекаэдра, икосаэдра.

И Евклид не просто описал правильные многогранники, но и исследовал их свойства. Он нашёл отношения длин рёбер всех правильных многогранников к диаметру описанной около многогранника сферы.

Более того, он предложил способы построения правильных многогранников, вписанных в сферу данного диаметра.


Учение о гармонии.


Ещё пифагорейцы знали, что если высоты звука относятся как небольшие целые числа, то сочетание звуков будет приятным, гармоничным. Так, отношение высот 1:2 даёт музыкальный интервал, называемый октавой, отношение 2:3 – даёт квинту, 3:4 кварту. Для того чтобы повысить на квинту звук, например, колеблющейся струны, надо уменьшить её длину на 1/3, заставив звучать оставшиеся 2/3 струны, при этом частота колебаний струны увеличится в 1/(2/3) раза. А для повышения звука на кварту надо извлечь звук из 3/4 струны, т.е. частота колебаний будет в 4/3 раза выше частоты колебаний основного тона. Исходя из этого, можно построить музыкальную шкалу.

Первым точными расчётами музыкальной шкалы стал Архит Тарентский. Евклид продолжил его традицию и изложил учение о гармонии в «Сечении канона» и – частично – в «Началах».










Список используемой литературы.

Научно-теоретический и методический журнал «Математика в школе» №4 2001. Издательство «Школа-Пресс».


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Как-то девочка Ира подошла к сисадмину и спросила, как сохранить весь Интернет на дискету. Сисадмин посмеялся и забыл.
А Ира не забыла.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Евклид: жизнь и сочинения", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru