Реферат: Евклид и его "Начала" - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Евклид и его "Начала"

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 18 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы





Реферат





На тему:



Евклид и его “начала”











Выполнил: Гордиенко Павел.

СШ №31





2002.




План.


1. Евклид и его начало.


2. Евклида алгоритм.





























1. Евклид и его “Начала”



В течение двух тысяч лет геометрию узнавали либо из “Начал” Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Аполлония и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX в “неевклидовой геометрий”.

Об этом поразительном человеке история сохранила настолько мало сведений, что не редко высказываются сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V в н.э., -первый серьёзный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея I,который царствовал с 306-283г.до н.э.

Евклид должен быть старше Архимеда, который ссылался на “Начало”. До наших времён дошли сведения, что он преподавал в Александрии, столица Птолемея I, начинавший превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые, по мнению Платона, должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию. Кроме “Начал” до нас дошли книги Евклида, посвящённые гармонии и астрономии.

Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора(VI век до н. э.), Евдокса и Теэтета (IV век до н.э.). Величайшая заслуга Евклида в том, что он подвёл итог построению геометрии и придал изложению столь совершенную форму, что на 2000 лет “Начала” стали энциклопедией геометрии.

Евклид с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в “Начало” ещё две книги-XIV- и XV-ю, написанные другими авторами.

Первая книга Евклида начинается с 23”определений”, среди них такие: точка есть то, что не имеет частей; линяя есть длина без ширины; линия ограничена точками; прямая есть линия, одинакова расположенная относительно всех своих точек; наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолжены, не встречаются. Это скорее наглядные представления об основных объектах и слово “определение” в современном понимании не точно передаёт смысл греческого слова “хорой”, которым пользовался Евклид.

В книге I рассматриваются основные свойства треугольников, прямоугольников, параллелограммов, сравниваются их площади. Здесь появляется теорема о сумме углов треугольника. Затем следует пять геометрических постулатов: через две точки можно провести одну прямую; каждая прямая может быть сколь угодно продолжена ; данным радиусом из данной точки можно провести окружность; все прямые углы равны; если две прямые проведены к третьей под углами, составляющими в сумме меньше двух прямых, то они встречаются с той же стороны от этой прямой. Все эти постулаты, кроме одного, вошли в современные курсы основной геометрии. За постулатами приводятся общие предположения, или аксиомы,- 8 общематематических утверждений о равенствах и неравенствах. Книга заканчивается теоремой Пифагора.

В книге II излагается геометрическая алгебра, с помощью геометрических чертежей даются решения задач, сводящихся к квадратным уравнениям. Алгебраической символики тогда не существовало.

В книге III рассматриваются свойства круга, свойства касательных и хорд, в книге IV-правильные многоугольники, появляются основы учения о подобии. В книгах VII-IX изложены начала теорий чисел, а основанной на алгоритме нахождения наибольшего общего делителя, приводится алгоритм Евклида, сюда входит теория делимости и теорема о бесконечности множества простых чисел.

Последние книги посвящены стереометрии. В книге XI излагаются начала стереометрии, в XII с помощью метода исчерпания определяются отношения площадей двух кругов и отношение объёмов пирамиды и призмы, конуса и цилиндра. Вершина стереометрии у Евклида – теория правильных многогранников. В “Начало” не попало одно из величайших достижений греческих геометров – теория конических сечений. О них Евклид написал отдельную книгу “Начала конических сечений”, не дошедшую до нас, но её цитировал в своих сочинениях Архимед.

“Начало” Евклида не дошли до нас в подлиннике. Двенадцать столетий отделяют от Евклида самые старые известные списки, семь столетий – сколь- нибудь подробные сведения о “Началах”. В средневековую эпоху интерес к математике был утрачен, некоторые книги “Начал” пропали и потом с трудом восстанавливались по латинским и арабским переводам. А к тому времени тексты обросли “улучшениями” позднейших комментаторов.

В период возрождения европейской математике (XVIв.) “Начала” изучали и воссоздавали заново. Логическое построение “Начала”, аксиоматика Евклида воспринимались математиками как безупречное вплоть до XIX в., когда начался период критического отношения к достигнутому, который закончился новой аксиоматикой евклидовой геометрии – аксиоматикой Д. Гильберта. Изложение геометрии в “Началах” считалось образцом, которому стремились следовать учёные и за пределами математики.
















2. Евклида Алгоритм.


Алгоритм Евклида – это способ нахождения наибольшего общего делителя двух целых чисел, а также наибольшей общей меры двух соизмеримых отрезков.

Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на меньшее, затем второе число разделить на остаток от первого деления, потом первый остаток - на второй и т.д. Последний ненулёвой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.

Обозначив исходные числа через а и б, положительные остатки, получающиеся в результате делений, через r1 ,r2…, rn , а неполные частные через q1 , q2, можно записать алгоритм Евклида в виде цепочки равенств:

a=bq1 +r1 ,

b=r1q2 +r2

. . . . . . . . . .

rn-2=rn-1qn+rn

rn-1=rnqn+1.

Приведём пример. Пусть а=777, b=629. Тогда 777=629*1+148, 629=148*4+37, 148=37*4.

Последний ненулевой остаток 37 есть наибольший общий делитель чисел 777 и 629.

Для нахождения наибольшей общей меры двух отрезков поступают аналогично. Операцию деления с остатком заменяют его геометрическим аналогом: меньше отрезок откладывают на большим столько раз, сколько возможно: оставшуюся часть большего отрезка (принимаемую за остаток отделения) откладывают на меньшем отрезке и т.д.если отрезки a и b соизмеримы, то последний не нулевой остаток даст наибольшую общую меру этих отрезков. В случае несоизмеримых отрезков получаемая последовательность не нулевых остатков будет бесконечной.

Рассмотрим пример. Возьмём в качестве исходных отрезков сторону AB и AC равнобедренного треугольника ABC, у которого A=C = 72°, B= 36°. В качестве первого остатка мы получим отрезок AD (CD-биссектриса угла C), и, как легко видеть, последовательность и нулевых остатков будет бесконечной. Значит, отрезки AB и AC не соизмеримы .

Алгоритм Евклида известен издавна. Ему уже более 2000 лет. Этот алгоритм сформулирован в “Началах” Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного и т.д. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида (иногда называемый методом попеременного вычитания) был известен ещё пифагорейцам. К середине XVI в. алгоритм Евклида был распространён на многочлены, от одного переменного в дальнейшем удалось определить алгоритм Евклида и для некоторых других алгебраических объектах.

Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший делитель d чисел a и b в виде d=ax+by (x;y- целые числа), а это позволяет находить решение Диофантовых уравнений 1-й степени с двумя неизвестными. Алгоритм Евклида является средством для представления рационального числа в виде цепной дроби. Он часто используется в программах для электронных вычислительных машин.



Использованная литература.



Энциклопедический словарь юного математика.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Муж поздно вечером приходит домой:
- Что у нас сегодня на ужин, дорогая?
- Твоя лапша.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Евклид и его "Начала"", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru