Реферат: Двойное векторное произведение - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Двойное векторное произведение

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 40 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы


Двойное векторное произведение

Трём векторам a, b и c можно поставить в соответствие вектор, равный a?(b?c). Этот вектор называют двойным векторным произведением векторов a, b и c. Двойное векторное произведение встречается в механике и физике.

Двойное векторное произведение выражается через линейную комбинацию двух или трёх своих сомножителей по формуле


a?(b?c) = b(ac) - c(ab).


Докажем это. Обозначим через x разность левой и правой частей этого равенства


x = a?(b?c) - b(ac) + c(ab).


Нам достаточно показать, что x = 0.

Предположим, что векторы b и c коллинеарны. Если они оба нулевые, то в выражении для вектора x все слагаемые равны нулевому вектору и поэтому равеноство

x = 0 выполнено. Если же один из коллинеарных векторов b, c ненулевой, например c, то для другого вектора при некотором ? є R выполнено равенство b=?c. Но тогда


x=a?(?c?c)-?c(ac)+c?(ac)=0.


Предположим теперь, что векторы b и c неколлинеарны. Тогда их векторное произведение не равно нулевому вектору и ортогонально ненулевому вектору b. Векторы








образуют правый ортонормированный базис в V3 (это и отражается в обозначениях). В этом базисе справедливы следующие разложения векторов:


b=|b|i , c = c1i+c2k , a = a1i + a2j + a3k ,


и поэтому


b?c = - |b|c2j , a?(b?c) = - |b|c2(a1k – a3i).


Кроме того,


ac = a1c1 – a3c2 , ab = a1|b|.


В результате находим, что и в случае неколлинеарных векторов b и c выполнено равенство

x= -|b|c2(a1k – a3i) – (a1c1 – a3c2)|b|i + a1|b|(c1i + c2k) = 0.



Произведение (a?b)?c ортогонально вектору a?b, то есть в случае, когда векторы a и b не коллинеарны, лежит в плоскости векторов a и b. Следовательно, оно разлагается по векторам a и b, то есть существуют такие два числа x и y, что

(a?b)?c=xa+yb.


Чтобы найти эти числа, мы воспользуемся леммой, согласно которой существуют положительно ориентированный ортонормированный базис е1, е2, е3 ,связанный с векторами a, b и с формулами

a=a1e1

b=b1e1+b2e2,

c=c1e1+c2e2+c3e3.


В этом базисе вектор a?b имеет координаты (0,0, a1b2) , и потому вектор (a?b)?c – координаты





Так как вектор xa+yb имеет координаты (xa1+yb1, yb2, 0), то, следовательно, формула (a?b)?c=xa+yb будет иметь место при

x = -b1c1b2c2 , y = a1c1.

Поскольку, с другой стороны, а1с1 = ас и b1c1+b2c2 = bc, этим доказано следующее предложение:

ПРЕДЛОЖЕНИЕ. Для любых векторов a, b, c имеет место равенство (a?b)?c=(ac)b-(bc)a.

Из этой формулы непосредственно вытекает следующее тождество Якоби:

(a?b)?c+(c?a)?b+(b?c)?a=0.


Действительно, в силу коммутативности скалярного умножения

(ac)b-(bc)a+(cb)a-(ab)c+(ba)c-(ca)b=0.


С помощью формулы (a?b)?c=(ac)b-(bc)a легко вычисляется также скалярное произведение (a?b)(x?y) двух векторных произведений. Действительно пользуясь антикоммутативностью смешанного произведения, мы немедленно получим, что

(a?b)(x?y)=((xa)y-(ya)x)b=(xa)(yb)-(ya)(xb),

то есть





Определитель в правой части этой формулы называется взаимным определителем Грамма пар векторов a,b и x,y.

При a=x и b=y формула даёт формулу





которую можно переписать также в следующем изящном виде:

|a?b|2+|ab|2 = a2 b2.


Определитель в правой части предыдущей формулы называется определителем Грамма пары векторов a и b.

Поскольку |a?b| равно площади S параллелограмма, построенного на векторах a, b, формула

равносильна формуле






в которой векторные произведения явно не участвуют. Таким образом, мы видим, что определитель Грама пары векторов равен квадрату площади параллелограмма, построенного на этих векторах.


Вычислив скалярные произведения через координаты мы немедленно получим следующее тождество Лагранжа :

При а3=0 , b3 = 0 («случай плоскости») тождество Лагранжа равносильно тождеству

(a21+a22)(b21+b22) = (a1b1 + a2b2)2 + (a1b2 – a2b1)2,

Известному из теории комплексных чисел (тождество выражает тот факт, что произведение модулей комплексных чисел a1+ia2 и b1+ib2 равно модулю их произведения).

Аналогом вышеприведённых формулы и тождества существует и для трёх векторов a, b, c. В нём участвует определитель






называемый определителем Грамма тройки векторов a, b, c. В координатах относительно ортонормированного базиса e1, e2, e3 , в котором векторы a, b, c выражаются по формулам

a=a1e1

b=b1e1+b2e2,

c=c1e1+c2e2+c3e3 , этот определитель имеет вид





Автоматическое вычисление показывает, что он равен a21b22c23. С другой стороны, как мы уже знаем, a1b2c3= abc. Таким образом




, то есть




где V – объём параллелепипеда, построенного на векторах a, b, c.


Аналог формулы имеет вид







где определитель справа называется взаимным определителем Грама троек a, b, c и x, y, z.





Министерство образования и науки Украины

Запорожский национальный университет

Кафедра алгебры и геометрии










Реферат

По теме: «Двойное векторное произведение»












Выполнила: Ильенко

Ульяна Игоревна,

студентка 1 курса,

математического факультета

Проверил: Зиновеев

Игорь Валерьевич







Запорожье

2006 год

1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Я вообще не понимаю, как в биатлоне можно прийти вторым, если у тебя с собой ружьё.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Двойное векторное произведение", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru