Реферат: Геометрия Лобачевского - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Геометрия Лобачевского

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 18 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




Геометрия Лобачевского


Лобачевский по существу берет за отправной пункт все то, что Евклид доказал без помощи 5-го постулата. Все эти предположения являются общими как для геометрии Евклида, так и для геометрии Лобачевского.

Таким образом, все предложения абсолютной геометрии сохраняют свою силу и в геометрии Лобачевского. Абсолютная геометрия есть общая часть и общий фундамент евклидовой геометрии и геометрии Лобачевского.

В первом случае мы получим геометрию Евклида, во втором случае –

Геометрию Лобачевского. Отсюда ясно, что все сходное в геометриях Евклида и Лобачевского имеет свои основания в абсолютной Геометрии, а все то, что различно в них, коренится в различии аксиом параллельности.

Укажем ряд важнейших планиметрических теорем, относящихся к абсолютной геометрии.

    1. Каждый отрезок и каждый угол можно единственным образом разделить пополам.

    2. Через каждую точку можно провести единственный перпендикуляр к данной прямой.

    3. Сумма двух смежных углов равна 2d.

    4. Все прямые углы равны между собой.

    5. Вертикальные углы равны.

    6. В равнобедренном треугольнике биссектриса угла при вершине является медианой и высотой, углы при основании равны.

    7. Перпендикуляр короче наклонной. Известные теоремы о сравнении перпендикуляров, наклонных и их проекций.

    8. Внешний угол треугольника больше внутреннего угла, с ним не смежного.

    9. Во всяком треугольнике не может быть более одного прямого или тупого угла.

    10. В треугольнике против большей стороны лежит больший угол, и обратно.

    11. В прямоугольном треугольнике гипотенуза больше катета.

    12. Сумма двух сторон треугольника больше третьей.

    13. Три признака равенства треугольников.

    14. Если при пересечении двух прямых третьей соответственные углы равны, или внутренние накркст лежащие углы равны, или сумма внутренних односторонних углов равна 2d, то данные прямые не пересекаются.

    15. Два перпендикуляра к третьей прямой не пересекаются.

    16. Через точку, лежащую вне прямой, в плоскости, ими определяемой, проходит по крайней мере одна прямая, не пересекающая данной.

    17. Сумма углов треугольника не более 2d(11-я теорема Лежандра).

    18. Если в плоскости две точки лежат по разные стороны прямой, то отрезок, их соединяющий, пересекает данную прямую.

    19. Если луч проходит через вершину треугольника внутрь его, то он пересекает противоположную сторону треугольника.

    20. Три биссектрисы треугольника пересекаются в одной точке, лежащей внутри треугольника.

    21. В треугольник можно вписать единственную окружность.

    22. Прямая пересекает окружность не более чем в двух точках.

    23. Равные дуги окружности стягиваются равными хордами, и обратно.

    24. Если выбрать единичный отрезок, то всякому отрезку можно поставить в соответствие единственное положительное число, называемое длинной отрезка, и, обратно, каждому положительному числу можно поставить в соответствие некоторый отрезок, длина которого выражается этим числом.

    25. Если все внутренние лучи, выходящие из вершины угла АОВ, а так же сторона АО и ОВ разбить на два класса так, что 1) каждый луч принадлежит одному и только одному из этих классов, луч АО принадлежит первому классу, а луч ОВ – ко второму, 2) каждый луч первого класса лежит между ОА и любым лучом второго класса, то существует один и только один луч l, пограничный между лучами обоих классов, причем сам луч l принадлежит либо первому, либо второму классу.

    26. Если выбрать некоторый угол в качестве единицы измерения, то каждому углу можно поставить соответствие единственное число, называемое мерой или величиной угла.


Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (т.е. абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующая аксиома, противоположный аксиоме Плейфера, а значит, и 5-му постулату.

Через точку, лежащую вне прямой плоскости, определяемой ими, можно провести не менее 2-х прямых, не пересекающих данной прямой.

Эта аксиома утверждает существование, по крайней мере 2-х таких прямых.Отсюда следует, что таких прямых существует бесконечное множество.







Очевидно, что все прямые, проходящие через точку М внутри вертикальных углов  и , образованных прямыми b и c также не пересекают а, а таких прямых бесконечное множество.

Плоскость (или пространство), в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью (или пространством) Лобачевского.

Перейдём непосредственно к параллельным Лобачевского.







Две граничные прямые СС’ и DD’ называются параллельными прямой ВВ’ в точке А, причём прямая С’С называется параллельной В’В в направлении В’В, а прямая D’D называется параллельной прямой ВВ’ в направление ВВ’. Острый угол  , образуемый параллельными с перпендикуляром АР, называется углом параллельности в точке А относительно прямой BB’. Этот угол, есть функция длины р перпендикуляра АР и обозначается так: =П (р). АР называются отрезком параллельности в точке А относительно прямой BB’.

Все прямые пучка не пересекающие BB’ и лежащие внутри заштрихованных вертикальных углов, называются расходящимися с BB’ или сверх параллельными к BB’; угол, образуемый такой прямой с перпендикуляром АР с обеих от него сторон, больше угла параллельности  .

Наконец , все остальные прямые пучка, образующие с АР с какой-либо стороны острый угол, меньше угла параллельности  , называются пересекающими прямую BB’ или сходящимися с BB’ .

Необходимо обратить внимание , что геометрия Лобачевского при указание, то прямая СС’ параллельно прямой BB’, является совершенно обязательным также указывать, во-первых, в каком направление CC’ параллельно BB’, во-вторых, в какой точке , ибо у нас пока нет уверенности в том , что если мы на прямой CC’ возьмём какую-нибудь точку М , отличную от А , то и по отношению к пучку прямых с центра в точке М прямая СС’ будет граничной прямой.

Определение. Прямая С’C называется параллельной прямой в направление B’B в точке А, если , во-первых, прямая С’C не пересекает прямой BB’, во-вторых , C’C является граничной в пучке прямых с центром в точке А, т. е. всякий луч АЕ, проходящий внутри угла CAD, где D-любая точка прямой BB’, пересекает луч DB.







Условимся в целях краткости и удобства обозначать параллельность прямой АА’ к BB’в направление B’B символом AA’  B’B, где порядок букв указывает направление параллельности. На чертеже направление параллельности указывается стрелками.

Теорема1. Если прямая ВВ’АА' в точке М, то ВВ'АА' в любой своей точке N.







Теорема 2. Если ВВ'АА', то и обратно: АА'ВВ'.

Теорема 3. Если АА'СС' и ВВ'СС', то АА'ВВ'.

Теорема 4. Если прямая CC’ лежит между двумя прямыми АА’ и BB’, параллельными в некотором направление, не пересекая их, то CC’параллельна обеим этим прямым в том же направлении.

Теорема 5.Если две прямые при пересечении с третьей образуют равные соответственные углы, или внутренние односторонние углы, в сумме составляющие 2d, то эти прямые расходятся.

Задача 902.(Сборник задач - Атанасян, ч.2) Пусть (U1V1) (U2V2). Доказать, что если прямая (UV) лежит между (U1V1) и (U2V2) и не пересекает одну из них, то она параллельна данным.







Действительно, отрезок U1U2, соединяющий любые точки U1 и U2 параллельных прямых U2V2 и U1V1 , пересечет UV в некоторой точке U, ибо UV по условию лежит между U2V2 и U1V1 (теорема 1.18).

В силу параллельности U2V2 и U1V1 любой луч U2E , проходящий внутри угла V2U2U1, пересечёт U1V1, а значит, и UV. Следовательно, U2V2  UV. Пользуясь теоремами 2 и 3 , легко убедиться, что U1V1 UV.

Интересно отметить, что в геометрии Лобачевского прямая может пересечь две параллельные, не пересекая третьей. Действительно, например, любая прямая EF, расходящаяся с АА’, пересекает СС’и BB’, не пересекая АА’.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Одного не могу понять - как они, всё время сидя на шее, постоянно ухитряются срать на голову?
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Геометрия Лобачевского", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru