Реферат: Датчики гидравлических механизмов - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Датчики гидравлических механизмов

Банк рефератов / Информатика, информационные технологии

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 234 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

12 1. Статические характеристики датчиков . Представление статических характеристик и их виды Если известны те или иные показатели элемента, то можно оценить свойство этого элемента. В автоматике и телемеханике свойства элементов оцениваются разными показателями, связанными входными и выходными величинами. [1, 21-25] Функциональная зависимость выходной величины Y от входной V , выраженная математически или графически, называется статической характеристикой элемента Y = f ( X ). Элементы, имеющие не зависящие от времени параметры и линейные статические характеристики, называются линейными, а имеющие нелинейные характеристики - нелинейными элементами. По статической характеристике можно определить вид элемен та (датчик, реле). Так, например, если статическая характеристика элемента непрерывна, т. е. величина Y находится в определенной непрерывной зависимости от величины X (рис. 1), то такой элемент называют источником первичной информации или датчиком. Рисунок 1 Рисунок 2 Если статическая характеристика элемента изменяется скачком, т. е. практически осуществляется включение или отключение при достижении входной величиной X определенных, заранее установленных значений, то такой элемент называется реле (рис. 2). В зависимости от природы контролируемой входной величины X реле называются электрическими, тепловыми, оптическими. По наименованию входной величины X реле имеет уточняющий термин: реле уровня, реле скорости, реле тока, реле напряжения и т. д. Как датчики, так и реле являются основными элементами автоматики. Они являются основными и обязательными элементами воспринимающих блоков (устройств). Их используют также и в промежуточных, и в исполнительных блоках автоматических систем. Элементы для конкретных автоматических систем выбирают по ряду показателей, их характеризующих, - коэффициенту передачи, порогу чувствительности, погрешности. Коэффициент передачи элемента представляет собой отношение выходной величины элемента У к входной величине X , т. е. К = Y / X . У элементов с линейной статической характеристикой коэффициент передачи - величина постоянная, а у элементов с нелинейной - переменная, зависящая от X . Если входная и выходная величины элемента имеют одинаковую физическую природу, т. е. одинаковые размерности, то коэффициент передачи размерности не имеет и его называют коэффициентом усиления. При разных размерностях входной и выходной величин коэффициент передачи элемента имеет размерность. Применительно к датчику коэффициент передачи называют также чувствительностью. Чем больше К, тем больше выходной сигнал элемента при том же изменении входной величины и тем меньше нужно будет усиливать выходной сигнал до требуемого значения. Порог чувствительности - это наименьшее (по абсолютному значению) значение входного сигнала, способное вызвать изменение выходного сигнала. Интервал между значением входного сигнала, не оказывающего воздействия на значение выходного сигнала, и значением входного сигнала, оказывающего воздействие на значение выходного сигнала, называется зоной нечувствительности - Д Хн. Чем больше Д Хн тем хуже элемент. Например, у электродвигателя порог чувствительности равен напряжению трогания двигателя. Погрешность элемента появляется из-за неточной тарировки или градуировки (вследствие разброса параметров) элементов в процессе их изготовления (в пределах установленных допусков). В результате погрешности происходит отклонение характеристики элемента от заданной «идеальной» статической характеристики. Погрешность элемента может также возникнуть в результате изменения его внутренних свойств (старение, износ) или внешних факторов (воздействие температуры, влажности, питающего напряжения). Различают абсолютную, относительную и приведенную погрешности. Под абсолютной погрешностью элемента понимают разность между полученным У п и действительным У значениями выходной величины, т. е. Д = У П - Y . Действительное номинальное значение выходной величины - это идеальное значение выходной величины при отсутствии погрешности. По мере уменьшения номинального значения выходной величины при неизменном значении абсолютной погрешности относительная погрешность увеличивается. Погрешность, которая возникает при нормальных условиях эксплуатации, называется основной погрешностью. Условия эксплуатации элемента не всегда совпадают с нормальными, поэтому к основной погрешности элемента добавляется погрешность, называемая дополнительной. 2. Гидравлические исполнительные механизмы, особенности их конструкций и области применения Исполнительным механизмом называется [ 3, с.110 - 116 ] элемент АСР, преобразующий выходной сигнал регулятора в перемещение регулирующего органа. По виду используемой энергии исполнительные механизмы делятся на пневматические, гидравлические и электрические. В химической промышленности наибольшее применение получили пневматические и электрические исполнительные механизмы. Гидравлические исполнительные механизмы предназначены для преобразования изменения давления жидкости в перемещение регулирующего органа ( РО ) . Гидравлические ИМ по принципу действия и конструктивному оформлению не имеют существенных различий. Однако отдельные узлы имеют некоторые конструктивные особенности. В промышленности используют поршневые и мембранные ИМ поступательного действия. В ИМ вращательного действия кривошипно-ползунного типа угол поворота вала составляет 300 . Перемещение поршня в цилиндре преобразуется с помощью шатуна и кривошипа в угол поворота выходного вала. В ИМ вращательного действия лопастного типа, в цилиндре распо ложена прямоугольная лопасть , жёстко закреплённая на валу, к которому при мыкает перегородка . Внутри перегородки находится уплотнительная планка, поджимаемая к валу пружиной. Назначение РО – изменить кол ичество в еществ а или энергии подаваемых на вход объекта регулирования при изменении регулирующего параметра. Они могут быть электрическими и неэлектрическими. К электрическим относятся реостаты и вариаторы. Наибольшее распространение в лёгкой пром ышленно сти получили неэлектрические регулирующие органы: регулирующие задвижки или заслонки и регулирующие клапаны. Корпус диафрагмо нтового клапан а футерован. Для футеровки применяют эбонит, винипласт, фторопласт. Регулирующим органом яв ляет ся диафрагма, выполненная из резины, полиэтилена или фторопласта. На диафрагму воздействует плунжер, изменяющий прогиб диафрагмы при перемещении штока. При выборе РО необходимо учитывать св ойст ва и характеристики среды (состояние, агрессивность, способность к кристализации и др.), параметры регулируемой среды (т емперату ра, давление, влажность и т.п.), минимальные и максимальные расходы среды через РО, влияние рабочей среды на работу РО (взрывоопасность, вибрация) Регулирующий орган должен быть сопряжён с исполнительным механизмом . 3 Приборы автоматического контроля расхода и количества Для контроля и управления производством большое значение имеет измерение расхода и количества различных веществ: газов, жидкостей, пульп и суспензий. [2, с.185-189] Расход - это количество вещества, протекающего через сечение трубопровода в единицу времени. Количество измеряют в единицах объема (м 3 , см 3 ) или массы (т, кг, г). Соответственно может измеряться объемный (м 3 /с, м 3 /ч, см 3 /с) или массовый (кг/с, кг/ч, г/с) расход. Для измерения расхода веществ применяют расходомеры, основанные на различных принципах действия. Наибольшее распространение для жидкоетей и газов получили расходомеры переменного и постоянного перепада давлений, переменного уровня и индукционные. Для измерения расхода сыпучих веществ обычно используют различные весоизмерительные устройства. Для измерения количества применяют расходомеры с интеграторами или объемные и скоростные счетчики. Интегратор непрерывно суммирует показания прибора, а количество вещества определяют по разности его показаний за фебуемый промежуток времени. Следует отметить, что измерение расхода и количества является сложной задачей, поскольку на показания приборов влияют физические свойства измеряемых потоков: плотность, вязкость, соотношение фаз в потоке и г. п. Физические свойства измеряемых потоков, в свою очередь, зависят от условий эксплуатации, главным образом от температуры и давления. Если условия эксплуатации расходомера отличаются от условий, при которых производилась его градуировка, то ошибка в показаниях прибора может значительно превысить допустимую величину. Поэтому для серийно выпускаемых приборов установлены ограничения области их применения: по свойствам измеряемого потока, максимальной температуре и давлению, содержанию твердых частиц или газов в жидкости и т.п. Рисунок 3 – а - диафрагма, б - сопло Вентури, в – труба Вентури Расходомеры переменного перепада давлений. Действие этих расходомеров основано на возникновении перепада давлений на сужающем устройстве в трубопроводе при движении через него потока жидкости или газа. При изменении расхода Q величина этого перепада давлений Ар также изменяется. Наиболее простым и распространенным сужающим устройством является диафрагма (рис. 3, а). Стандартная диафрагма представляет собой тонкий диск с круглым отверстием в центре. От стойкости диафрагмы и особенно входной кромки ее отверстия существенно зависит точность измерения расхода. Поэтому диафрагмы изготовляют из материалов, химически стойких к измеряемой среде и устойчивых против механического износа. Кроме диафрагмы в качестве сужающих устройств применяют также сопло Вентури (рис. 3 б), трубу Вентури (рис. 3, в), которые создают меньшее гидравлическое сопротивление в трубопроводе. Сужающее устройство расходомера переменного перепада давлений является первичным преобразователем, в котором расход преобразуется в перепад давлений. Промежуточными преобразователями для расходомеров переменного перепада давлений служат дифманометры. Дифманометры связаны с сужающим устройством импульсными трубками и устанавливаются в непосредственной близости от него. Поэтому в расходомерах переменного перепада давлений обычно используют дифманометры, снабженные промежуточным преобразователем для передачи результатов измерений на щит оператора (например, мембранные дифманометры ДМ). Так же как при измерении давления и уровня, для защиты дифманометров от агрессивного воздействия измеряемой среды применяют разделительные сосуды и мембранные разделители. Особенностью первичных преобразователей расходомеров переменного перепада давлений является квадратичная зависимость перепада давлений от величины расхода. Чтобы показания измерительного прибора расходомера линейно зависели от расхода, в измерительную цепь расходомеров переменного перепада давлений вводят линеаризующий преобразователь. Таким преобразователем служит, например, блок линеаризации в промежуточном преобразователе. При непосредственной связи дифманометра с измерительным прибором линеаризация производится в самом приборе с помощью лекала с квадратичной характеристикой. Расходомеры постоянного перепада давлений. Расход жидкости или газа можно измерять и при постоянном перепаде давлений. Для сохранения постоянного перепада давлений при изменении расхода через сужающее устройство необходимо автоматически изменять на соответствующую величину площадь его проходного сечения. Наиболее простой способ - автоматическое изменение площади проходного сечения в ротаметре (рис. 4). Ротаметр (рисунок 4 ) представляет собой вертикальную конусную трубку 2, в которой находится поплавок. Измеряемый поток Q , проходя через ротаметр снизу вверх, создает перепад давлений до и после поплавка. Этот перепад давлений, в свою очередь, создает подъемную силу, которая уравновешивает вес поплавка. Если расход через ротаметр изменится, то изменится и перепад давлений. Это приведет к изменению подъемной силы и, следовательно, к нарушению равновесия поплавка. Поплавок начнет перемещаться. А так как трубка 2 ротаметра конусная, то при этом будет изменяться площадь проходного сечения в зазоре между поплавком и трубкой. В результате, произойдет изменение перепада давлений, а следовательно, и подъемной силы. Когда перепад давлений и подъемная сила снова вернутся к прежним значениям, поплавок уравновесится и остановится. Рисунок 4 – Ротаметр - 1 – поплавок, 2 – конусная трубка. 3 - шкала Таким образом, каждому значению расхода через ротаметр Q соответствует определенное положение поплавка. Так как для конусной трубки площадь кольцевого зазора между ней и поплавком пропорциональна высоте его подъема, то шкала ротаметра получается равномерной. Промышленность выпускает ротаметры со стеклянными и металлическими трубками. У ротаметров со стеклянной трубкой РМ шкала нанесена прямо на поверхности трубки. Такие ротаметры могут применяться при давлении в трубопроводе до 6- 10 5 Па. Для дистанционного измерения положения поплавка в металлической трубке используют промежуточные преобразователи линейного перемещения в унифицированный электрический или пневматический сигнал. В ротаметрах с электрическим выходным сигналом (например, РЭД) поплавок соединен с сердечником дифференциально-трансформаторного преобразователя. В ротаметрах с пневматическим выходным сигналом (например, РПД) для передачи положения поплавка промежуточному преобразователю используется магнитная муфта. Выпускаются также ротаметры РПФ для измерения расхода сильноагрессивных сред. У таких ротаметров все детали, соприкасающиеся с измеряемой средой, изготовлены из фторопласта-4. Ротаметры P П O оборудованы паровым обогревом. Они предназначены для измерения расхода кристаллизующихся сред. Расходомеры переменного уровня. Из гидравлики известно, что если жидкость свободно вытекает через отверстие в дне бака, го ее расход Q н уровень в баке Н связаны между собой. Следовательно, по уровню в баке можно судить о расходе из него. На этом принципе основано действие расходомеров переменного уровня (рис унок 5). Очевидно, что роль первичного преобразователя здесь выполняет сам бак с отверстием 2 в дне. Выходной сигнал такого преобразователя - уровень в баке. Поэтому промежуточным преобразователем измерительной цепи расходомера переменного уровня может служить любой из рассмотренных уровнемеров. Рисунок 5 – Расходомер переменного уровня, 1 – бак, 2 – отверстие. Рисунок 6 – Индукционный расходомер: 1 – трудопровод , 2 – электромагнит, 3 – магнитные силовые линии, 4,6 – электроды, 5 – измерительный блок, 7 – слой электроизоляции Расходомеры переменного уровня обычно используют для измерения расхода агрессивных и загрязненных жидкостей при сливе их в емкости, находящиеся под атмосферным давлением. Индукционные расходомеры. Действие индукционных расходомеров основано на законе электромагнитной индукции, согласно которому в проводнике, движущемся магнитном поле, будет наводиться э.д.с, пропорциональная скорости движения проводника. В индукционных расходомерах (рис. 6) роль проводника выполняет электропроводная жидкость, протекающая по трубопроводу 1 и пересекающая магнитное поле 3 электромагнита 2. При этом в жидкости будет наводиться э. д. с. U , пропорциональная скорости ее движения, т. е. расходу жидкости. Выходной сигнал такого первичного преобразователя принимается двумя изолированными электродами 4 и 6, установленными в стенке трубопровода. Участок трубопровода по обе стороны от электродов покрывают электроизоляцией 7, чтобы исключить шунтирование наводимой э.д.с. через жидкость и стенку трубопровода. В расходомерах ИР-11 и ИР-51 измерительная схема, выполненная в виде отдельного блока 5, преобразут наводимую э.д.с. U в унифицированный токовый сигнал i . Расстояние между первичным преобразователем и измерительным блоком не должно превышать 100 м при электропроводности измеряемой среды до 5*10 2 См/м и 10 м при электропроводности среды до 10 -3 См/м. Сопротивление нагрузки не должно превышать 2,4 кОм. Степень агрессивности измеряемых сред для индукционных расходомеров определяется материалом изоляции трубы и электродов первичного преобразователя. № расходомерах ИР для этой цели используют резину, кислотостойкую эмаль и фторопласт. Наиболее стойким к воздействию агрессивных сред является расходомер с фторопластовым изоляционным покрытием и электродами из графитизированного фторопласта. В процессе эксплуатации расходомеров ИР периодически, не реже одного раза в неделю должны проверяться нуль и градуировка прибора. Для проверки первичный преобразователь заполняют измеряемой жидкостью. После этого переключатель режима работы на передней панели измерительного блока переводится в положение «Измерение» и потенциометром «Нуль» стрелку измерительного прибора устанавливают на нулевую отметку. При переводе переключателя в положение «Калибровка» стрелка прибора должна остановиться на отметке 100%. В противном случае стрелку выводят на эту отметку потенциометром «Калибровка». Литература 1. Головинский О.И. Основы автоматики .-М..1987.- с.21 2. Камрезе А.Н., Фитерман М.Я. Контрольно – измерительные приборы и автоматика. – М.,1980.-с. 110
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
В среде московских диггеров существует легенда о секретной станции метро "Кержаковская".
Попасть туда невозможно.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по информатике и информационным технологиям "Датчики гидравлических механизмов", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru