Контрольная: Решение задачи о ранце методом ветвей и границ - текст контрольной. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Контрольная

Решение задачи о ранце методом ветвей и границ

Банк рефератов / Программирование

Рубрики  Рубрики реферат банка

закрыть
Категория: Контрольная работа
Язык контрольной: Русский
Дата добавления:   
 
Скачать
Архив Zip, 208 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы



Лабораторная работа № 6

Телешовой Елизаветы, гр. 726,

Решение задачи о ранце методом ветвей и границ.

1. Постановка задачи.

1929 год. В США великая депрессия, введен сухой закон. Страна просто задыхается без спиртного. В этот сложный момент группа инициативных граждан под руководством Аль Капоне решает помочь родной стране. Ими планируется поставка алкогольной продукции из Ливерпуля в Штаты. Благодарные сограждане из 5 крупных городов США готовы платить большие деньги за тонну спиртного: 2000 долл. в Бостоне, 3000 в Детройте, 2500 в Вашингтоне, 3200 в Нью-Йорке и 1800 долл в Чикаго. Все 5 городов находятся на разном расстоянии от порта, куда прибывает груз: Бостон – 250 миль, Детройт – 300 миль, Вашингтон – 500 миль, Нью-Йорк –100 миль и Чикаго – 600 миль. Требуется выбрать города, в которых можно получить максимальную прибыль от продажи спиртного. При этом суммарное расстояние от этих портов до порта с грузом не должно превышать 1000 миль.

2. Решение задачи.

Данная задача является задачей о ранце вида:

, (1)

где критерием является функция

, (2)

которая может быть устремлена и к максимуму, и к минимуму.

Для начала составим следующую математическую модель:

Пусть – j-тый город, откуда соответственно . При этом, если в j-тый город будет разгружаться алкогольная продукция, то , иначе . Другим ограничением будет являться суммарное расстояние до порта с грузом. Таким образом:

;

Целевой функцией или критерием будет являться максимальная благодарность сограждан:

.

Далее отбираем порты по приоритетности, т.е. в порядке убывания отношения :

(3); (2); (4); (1); (5).

После этого определяем начальный план следующим образом: пусть , поскольку отношение наибольшее, и следовательно продажа спиртного в Нью-Йорке даст наибольшую прибыль при наименьших затратах, которые зависят от расстояния. Вычитая из суммарного расстояния расстояние до порта мы получим расстояние, которое разделяется между остальными городами, т.е.:

, ;

Аналогично рассуждая, далее получаем:

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 500 миль, поэтому будет дробным: , => .

Таким образом, начальный опорный план: .

Значение целевой функции: .

Но обязательно целое. Поэтому чтобы определить, чему все же равен : 0 или 1 вычислим следующие значения:

;– целая часть критерия при существующем опорном плане.

;– значение критерия при целочисленном опорном плане, т.е. .

Множество D, которому принадлежит имеет , . Разделим его на 2 подмножества, такие что:

;

- здесь .

- здесь .

1) Анализ множества D1.

Поскольку целевая функция и ограничения будут иметь вид:

Строим новый опорный план:

, ;

, ;

, ;

Т.к. , поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

, при .

2) Анализ множества D2.

Поскольку целевая функция и ограничения будут иметь вид:

=> .

Строим новый опорный план:

, ;

, ;

Т.к. , поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

, при .

3) Отсев неперспективного подмножества.

.

Так как и больше Rec, то оба подмножества можно считать перспективными, но поскольку , то далее мы будем исследовать подмножество D2. Разделим его на 2 подмножества, такие что:

;

- здесь .

- здесь .

4) Анализ множества D3.

Поскольку , целевая функция и ограничения будут иметь вид:

.

Строим новый опорный план:

, ;

, ;

Т.к. , поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

, при .

5) Анализ множества D4.

Поскольку , целевая функция и ограничения будут иметь вид:

=> .

Строим новый опорный план:

, ;

Т.к. , поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

, при .

6) Отсев неперспективного подмножества.

.

Так как и больше Rec, то оба подмножества можно считать перспективными, но поскольку , то далее мы будем исследовать подмножество D3. Разделим его на 2 подмножества, такие что:

;

- здесь .

- здесь .

7) Анализ множества D5.

Поскольку , , целевая функция и ограничения будут иметь вид:

.

Строим новый опорный план, очевидно: . При , ограничение выполняется всегда.

;

, при .

8) Анализ множества D6.

Поскольку , , целевая функция и ограничения будут иметь вид:

.

Ограничение несовместное, поскольку даже при оно не выполняется. Следовательно множество D6 не существует.

Таким образом, оптимальным планом данной задачи будет: , то есть алкоголь выгоднее всего поставлять в 3 города: Детройт, Вашингтон и Нью-Йорк. При этом прибыль составит 8700 долл.



3. Постановка задачи о многомерном ранце.

В связи с тем, что спиртное стало хорошо раскупаться, Аль Капоне решил увеличить поставки. Но чтобы мирно спящее ФБР не дай бог не проснулось, было решено осуществлять поставки через три разных порта на восточном побережье. Цены на спиртное в пяти вышеуказанных городах не изменились, расстояние же от них (в милях) до портов указано в следующей таблице:


Бостон

Детройт

Вашингтон

Нью-Йорк

Чикаго

Порт 1

250

300

500

100

600

Порт 2

100

200

700

400

300

Порт 3

500

400

300

550

150

Во всех трех случаях суммарное расстояние от порта до городов не должно превышать 1000 миль. Требуется решить тот же самый вопрос: в какие города выгоднее поставлять продукцию?

4. Решение задачи о многомерном ранце (вручную).

Задача о многомерном ранце имеет следующую математическую модель:

, (3)

где критерием является функция

, (4)

От задачи об одномерном ранце она отличается наличием нескольких ограничений. Таким образом, математическая модель:

Пусть – j-тый город, откуда соответственно . При этом, если в j-тый город будет разгружаться алкогольная продукция, то , иначе .

;

Целевой функцией или критерием будет являться максимальная благодарность сограждан:

.

Решим задачу оценки критерия для каждого ограничения в отдельности. Пусть множество относится к первому ограничению, – ко второму, а – к третьему.

1) Анализ множества .

(3); (2); (4); (1); (5).

Определяем начальный план:

, ;

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 500 миль, поэтому будет дробным: , => .

Таким образом, начальный опорный план: .

;

2) Анализ множества .

(1); (2); (5); (3); (4).

Определяем начальный план:

, ;

, ;

, ;

В последнем случае оставшееся после других городов расстояние также равно 300 миль, поэтому будет целым: , => .

Таким образом, опорный план: .

;

3) Анализ множества .

(5); (2); (3); (4); (1).

Определяем начальный план:

, ;

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 550 миль, поэтому будет дробным: , => .

Таким образом, опорный план: .

;

4) Вычисление верхней и нижней границ.

Вычисляем верхнюю границу:

; – третье ограничение более жесткое, далее будем исследовать опорный план .

Определяем опорные планы для третьего ограничения:

a) , ;

, ;

В последнем случае оставшееся после других городов расстояние равно 50 миль, поэтому . Таким образом : .

б) , ;

, ;

В последнем случае оставшееся после других городов расстояние равно 100 миль, поэтому . Таким образом : .

в) В этом случае .

Вычисляем нижнюю границу:

;

;

;

.

5) Ветвление множества D.

;

- здесь .

- здесь .

6) Анализ множества D1.

a) Определяем начальный план для :

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 500 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

б) Определяем начальный план для :

, ;

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 700 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

в) Определяем начальный план для :

, ;

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 100 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

г) Вычисление верхней и нижней границ.

Вычисляем верхнюю границу:

; – первое ограничение более жесткое.

Определяем опорные планы для первого ограничения:

– В этом случае .

, ;

, ;

В последнем случае оставшееся после других городов расстояние равно 450 миль, поэтому . Таким образом : .

, ;

, ;

В последнем случае оставшееся после других городов расстояние равно 100 миль, поэтому . Таким образом : .

Вычисляем нижнюю границу:

Т.к. , то ;

;

.

7) Анализ множества D2.

Поскольку , то:

.

=> ;

a) Определяем начальный план для :

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 500 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

б) Определяем начальный план для :

, ;

, ;

, ;

Таким образом, новый опорный план: .

;

в) Определяем начальный план для :

, ;

В последнем случае оставшееся после других городов расстояние меньше 400 миль, поэтому будет дробным: , => . Таким образом, новый опорный план: .

;

г) Вычисление верхней и нижней границ.

Вычисляем верхнюю границу:

; – третье ограничение более жесткое.

Определяем опорные планы для третьего ограничения:

, ;

В последнем случае оставшееся после других городов расстояние равно 50 миль, поэтому . Таким образом: .

, ;

, ;

В последнем случае оставшееся после других городов расстояние равно 50 миль, поэтому . Таким образом : .

– В этом случае .

Вычисляем нижнюю границу:

Т.к. , то ;

;

.

8) Отсев неперспективного подмножества.

.

Так как и больше Rec, то оба подмножества перспективные, но поскольку , то далее мы будем исследовать , как более перспективное.

;

- здесь .

- здесь .

9) Анализ множества D3.

Поскольку , то:

a) Определяем начальный план для :

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 600 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

б) Определяем начальный план для :

, ;

, ;

В последнем случае оставшееся после других городов расстояние меньше 700 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

в) Определяем начальный план для :

, ;

В последнем случае оставшееся после других городов расстояние меньше 350 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

г) Вычисление верхней и нижней границ.

Вычисляем верхнюю границу:

; – третье ограничение более жесткое.

Определяем опорные планы для третьего ограничения:

, ;

, ;

В последнем случае оставшееся после других городов расстояние равно 100 миль, поэтому . Таким образом : .

, ;

, ;

В последнем случае оставшееся после других городов расстояние равно 300 миль, поэтому . Таким образом : .

– В этом случае .

Вычисляем нижнюю границу:

;

Т.к. , то ;

.

10) Анализ множества D4.

Поскольку , то:

.

=> ;

a) Определяем начальный план для :

, ;

В последнем случае оставшееся после других городов расстояние меньше 500 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

б) Определяем начальный план для :

, ;

, ;

Таким образом, новый опорный план: .

;

в) Определяем начальный план для :

В этом случае оставшееся после других городов расстояние меньше 150 миль, поэтому будет дробным: , => .

Таким образом, новый опорный план: .

;

г) Вычисление верхней и нижней границ.

Вычисляем верхнюю границу:

; – третье ограничение более жесткое.

Определяем опорные планы для третьего ограничения:

Очевидно, что поскольку , то .

Вычисляем нижнюю границу:

Т.к. , то ;

.

Так как и больше Rec, то оба подмножества перспективные, но поскольку , то подмножество более перспективное, следовательно оптимальным планом будет . То есть города, удовлетворяющие всем 3 условиям и при этом дающие максимальную прибыль – Детройт и Нью-Йорк.



6



1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Русский в японском ресторане:
- Mне саке охладить, а суши подогреть.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, контрольная по программированию "Решение задачи о ранце методом ветвей и границ", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru