Реферат: Устойчивость радиоэлектронных следящих систем - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Устойчивость радиоэлектронных следящих систем

Банк рефератов / Радиоэлектроника

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 165 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ Кафедра РТС РЕФЕРАТ На тему: « Устойчивость радиоэлектронных следящих систем » МИНСК, 2008 Устойчивость - способность системы возвращаться в состояние равнов е сия после прекращения возмущающего воздействия, которым система была выведена из состояния равнов е сия. Устойчивость является одним из основных показателей качества следящих систем. Система, не обладающая устойчивостью, практически неработосп о собна. Устойчивость определяется характером собственных колебаний в сист е ме при отсутствии внешних воздействий. Дифференциальное уравнение, описывающее работу следящей системы: , (1) где - задающее воздействие; y ( t ) – управляемая величина. Решение дифференциального уравнения представляется суммой общего решения однородного дифференциального уравнения и частного решения н е однородного дифференциального уравнения: , где - общее решение однородного дифференциального уравнения, опр е деляющее характер собственных колебаний в системе при отсутс т вии внешних воздействий; - частное решение неоднородного дифференциального уравнения, о п ределяющее реакцию системы на внешнее воздействие. Таким образом, характер собственных колебаний определяется решением ура в нения, которое имеет вид: , , (2) где - коэффициенты, определяемые начальными условиями ( начальные условия – значения выходной величины и её n -1 производных при t =0 ); - корни характеристического уравнения, получаемого из знаменателя передато ч ной функции: . Если все вещественные корни характеристического уравнения отрицател ь ные, а комплексные корни имеют отрицательные вещественные части, то, как следует из (3.2), собственные колебания системы являются затухающими и си с тема является устойчивой. Таким образом, для оценки устойчивости системы следует решить хара к теристическое уравнение и определить положение его корней на комплексной плоскости. Если все корни принадлежат левой полуплоскости комплексной плоскости – система устойчива. Если хотя бы один из корней находится в пр а вой полуплоскости – система неустойчива. Однако вследствие сложности в ы ражений для корней характеристических уравнений высоких порядков этот м е тод практически непригоден для анализа устойчивости. В связи с этим разраб о таны критерии устойчивости, позволяющие оценить устойчивость без реш е ния характеристического уравнения. Существуют алгебраические и часто т ные критерии устойчивости. Алгебраические критерии устойчивости Алгебраически критерии устойчивости состоят в проверке системы нер а венств, составленных из коэффициентов характеристического уравнения. Для систем, описываемых дифференциальными уравнениями не выше 2-го порядка, необходимым и достаточным условием устойчивости является пол о жительность коэффициентов характеристического уравнения: > 0 ; ; , где n
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Франция. Двое сумасшедших сбежали на автомобиле из сумасшедшего дома. Едут на большой скорости с горы под уклон.
Один из них говорит:
- Слушай, похоже, что эта машина без тормозов, у тебя педаль проваливается...
Второй отвечает:
- Ничего страшного. Она сама остановится внизу. Видишь знак - СТОП.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по радиоэлектронике "Устойчивость радиоэлектронных следящих систем", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru