Реферат: Кислородно-водородный жидкостный ракетный двигатель НМ60 - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Кислородно-водородный жидкостный ракетный двигатель НМ60

Банк рефератов / Астрономия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Архив Zip, 31 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы





Московский Государственный Технический Университет им. Н.Э. Баумана










Реферат


по КСМУ

на тему:





“Кислородно-водородный ЖРД НМ60”












Преподаватель: Медведев В.Е.

Студент : Мельников Сергей

Группа : М1-52









  • 1999 г. —

Исследования, проводимые в Европе в области ракет-носителей, показывают необходимость разработки кислородно-водородного двигателя большой тяги для эксплуатации в 90-годы.

Для выявления потенциальных технических проблем, начиная с 1978 года проводились предварительные исследования кислородно-водородного ЖРД с тягой 500 кН. В 1980 году было принято решение о разработке семейства РН Ариан-5 (рис.1), на которой предполагается использование разгонных блоков первой ступени РН Ариан-4 и нового кислородно-водородного блока Н60 (рис.2) на второй ступени. На рис.1 под каждой модификацией РН указана ее грузоподъемность (кг) и соответствующая орбита: LEO – низкая околоземная; GTO – переходная к стационарной.

Предварительные исследования по двигателю блока были начаты в 1981 году. Разработку планировалось начать в 1984 году, а закончить в 1991 году с тем, чтобы первый пуск Ариан-5 осуществить в 1993-1994 году.

Ниже рассматриваются основные результаты предварительных исследований по созданию ЖРД НМ60.

ЖРД должен удовлетворять следующим основным требованиям:

а) удельный импульс в вакууме - 4346 Нсек/кг;

б) номинальная тяга в вакууме – 800 кН; с возможностью дросселирования в полете до 600 кН;

в) перспективный уровень тяги в вакууме – 1300 кН. Данная тяга необходима для использования ЖРД на первой ступени перспективных РН и достигается увеличением давления в камере сгорания. Таким образом, первоначальная конфигурация с тягой 800 кН разрабатывается в условиях минимального технического риска;

г) длина и максимальный диаметр не более 4,0 и 2,4 м, соответственно, что обеспечивает безопасное разделение ступеней в полете. В перспективе предполагается использовать выдвигаемый насадок сопла;

д) критическим на входе в насос окислителя принято избыточное давление 1,5 х 105 Па и в насос горючего 0,5 х 105 Па, что позволяет обойтись без преднасосов;

е) ЖРД должен допускать многократное использование.


В процессе предварительных исследований рассматривались три схемы двигателя:

  1. ЖРД с использованием на турбине пара водорода, полученного в тракте охлаждения, принципиальная схема которого представлена на рис.3,а; 2) ЖРД с дожиганием генераторного газа (рис.3в); 3) ЖРД без дожигания генераторного газа (рис.3б), где 1 – насос горючего; 2 – насос окислителя; 3 – турбина горючего; 4 – парообразный водород; 5 – турбина насоса окислителя; 6 – газогенератор.

Принципиальными преимуществами ЖРД первой из рассмотренных схем (рис.3,а) являются: простота, предельно низкая стоимость производства и относительной низкий уровень давления в насосах, необходимый для заданного давления в камере сгорания. Тем не менее, предварительные исследования показывают, что тепловой энергии, снятой со всей поверхности камеры сгорания, включая сопло, не достаточно для подачи топлива в камеру сгорания с давлением 100 х 105 Па.

На рис.3,в представлена схема ЖРД с дожиганием генераторного газа. Камера сгорания в этом случае питается двумя отдельными турбонасосами, работающими на газе, полученном в предкамере, объединенной с турбонасосом жидкого водорода. Для данной схемы ЖРД рассматривались конфигурации турбонасосов, подобные ЖРД ТКА Space Shuttle, но без преднасосов, что объясняется требованиями к двигателю. Камера сгорая имеет регенеративное охлаждение, для чего используется 20% топлива, а 6% его идет на охлаждение сопла с последующим сбросом горячего пара.

На рис.4 приведен общий в ид ЖРД НМ60 с дожиганием генераторного газа (А) и без дожигания (В).

На рис.5 представлена принципиальная схема ЖРД без дожигания генераторного газа, где 1 – наддув окислителя; 2 – жидкий кислород; 3 – турбонасос окислителя; 4 – магистраль гелия; 5 – система продувки магистрали жидкого кислорода; 6 – система продувки магистрали жидкого водорода; 7 – жидкий водород; 8 – турбонасос горючего; 9 – наддув бака горючего; 10 – клапан регулирования соотношения компонентов; 11 – пиротехническая система запуска и раскручивания турбины; 12 – газогенератор; 13 – клапан продувки магистрали жидкого кислорода; 14 – клапан продувки магистрали жидкого водорода; 15 – система запуска; 16 – клапаны управления впрыском компонентов в газогенератор; 17 – главный клапан окислителя; 18 – главный клапан горючего; 19 – сопло, охлаждаемое жидким водородом с последующим его сбросом. Конструкция и технология изготовления камеры сгорания данной схемы, как и схемы с дожиганием генераторного газа, аналогичны маршевому двигателю ТКА Space Shuttle (SSME). Основные характеристики двух анализируемых схем ЖРД приведены в табл.1, где также для сравнения даны характеристики маршевого ЖРД ТКА Space Shuttle (SSME). Можно видеть, что для обеих схем уровни давления ниже, чем у SSME.


Таблица 1. Сравнение вариантов ЖРД НМ60 и ЖРД SSME



НМ 60 без дожигания

НМ 60 с дожиганием

SSME

Тяга в вакууме, кН


800


1300


800


1300


2092(100%)

Тяга на уровне моря, кН



624



1054



654



1104



1669

Соотношение компонентов


5,12


5,12


5,58


5,58


6.0

Камера сгорания:


Давление в камере сгорания х 105 Па


Отношение площадей






100



103,7






160



103,7






125



124,4






203



124,4






205



77.5

Газогенератор:


Давление

х 105 Па


Соотношение компонентов




50,6



0,9




115,6



0,9




194



0,68




355



0,9




356



0,81

Турбонасосы (Н):


Давление на выходе х 105 Па


Скорость вращения, об/мин





143/122



30000/

11700





243/218



40500/

16140




225/153

(257)



25000/

21900




415/248

(486)



35000/

31100




413/296

(480)*



34700/

27500

Мощность турбины, мВт


7,6/2,0


21,2/5,6


10,8/2,8


32,4/8,6


45,5/18,6


* - Давление на выходе второй ступени насоса окислителя.


На рис.6 приводятся характеристики двух схем ЖРД в диапазоне от 900 кН (6) до 1300 кН, где по оси ординат отложен удельный импульс [х 9.81 Нсек/кг], по оси абсцисс – давление в камере сгорания [x 105 Па], 1 – теоретический удельный импульс; 2 – двигатель с оптимальной степенью расширения (отношение площадей среза и критической части) с дожиганием генераторного газа; 3 – двигатель с дожиганием и с фиксированной степенью расширения; 4 – двигатель с оптимальной степенью расширения без дожигания; 5 – двигатель без дожигания с фиксированной степенью расширения; 6 – номинальная тяга; 7 – максимальная тяга.


Уменьшение удельного импульса для двигателя без дожигания генераторного база объясняется увеличением необходимого количества основных компонентов топлива для газогенератора. Обе схемы двигателя оптимизированы при тяге равной 800 кН.

Для двигателя без дожигания разработка, включая создание стендов, потребует 7,5 лет и 8,75 лет для двигателя с дожиганием. Кроме того, ЖРД с дожиганием для уровня тяги 800 кН имеет на 25% большую стоимость разработки и на 20) большую стоимость изготовления. Имея ввиду степень технического риска и стоимостные характеристики, для ЖРД НМ60 была выбрана схема без дожигания генераторного газа. В результате предварительных исследований были сформулированы новые требования:

  1. номинальная тяга в вакууме – 900 кН;

  2. ЖРД должен дополнительно обеспечивать следующие функции:

а) управление по каналам тангажа и рысканья, используя карданов подвес;

б) наддув топливных баков основными компонентами;

в) обеспечение расхода 1 50кг/сек для управления по крену;

  1. тяга и соотношение компонентов должны удовлетворять проектным и эксплуатационным органичениям, представленным на рис.7, где по оси ординат отложена тяга (кН), по оси абсцисс – соотношение компонентов; 1 – проектные ограничения; 2 – ограничения квалификационных испытаний; 3 – эксплуатационные ограничения; 4 – номинальные условия;

  2. при выборе проектные решений предпочтение должно отдаваться вариантам с минимальной стоимостью производства;

  3. обслуживание ЖРД должно предполагать использование его на многоразовых РН;

  4. двигатель должен использоваться для пилотируемых полетов с минимальной модификацией.

Старт турбин и воспламенение в газогенераторе и камере сгорания осуществляется пиротехнической системой, аналогичной ЖРД НМ7

Ариан-I. Соотношение компонентов регулируется клапаном, управляющим подачей газа на турбину окислителя. Тяга ЖРД и соотношение компонентов в газогенераторе регулируется клапаном, управляющим подачей компонентов в газогенератор. Проверки и контроль работы осуществляется ЭВМ двигателя и топливных баков. Основные характеристики двигателя даны в табл.2.


Турбонасос окислителя (рис.8) состоит из осевого преднасоса, одноступенчатого центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса выполнены из алюминиевого сплава, турбина из сплава INCO 718.



Таблица 2. Характеристики ЖРД НМ60



НМ 60

SSME

Тяга в вакууме, кН

900

2090

Тяга на уровне моря, кН

715

1700

Удельный импульс в вакууме, Нс/кг

4364

4462

Удельный импульс на уровне моря, Нс/кг

3423

3559

Соотношение компонентов

5,1

6,0

Давление в камере сгорания, х 105 Па

100

207

Отношение площадей

110,5

77,5

Суммарный массовый расход, кг/с

206

468

Массовый расход газогенератора, кг/с

7,06

248

Расход сбрасываемого охладителя (Н2), кг/с

1,93

-

Давление на выходе из насоса окислителя, х 105 Па

125,7

319(528)

Длина, м

4,0

4,24

Диаметр среза сопла, м

2,52

2,39

Время работы двигателя, с

291

480

Масса, кг

1300

3002


Подшипники насоса смазываются жидким кислородом, а подшипники турбины – жидким водородом. Герметизация достигается динамическими уплотнителями типа плавающих колец и наддувом гелием. Дистанционно управляемый уплотнитель служит для предупреждения просачивания жидкого водорода в процессе захолаживания перед стартом. Осевые нагрузки компенсируются регулированием потока жидкого кислорода к задней части крыльчатки. Основные характеристики турбонасоса кислорода даны в таблице 3.

Турбонасос водорода (рис.9) состоит из осевого преднасоса,

двухступенчатого центробежного насоса и двухступенчатой турбины. Подшипники вала расположены вне секций насоса и турбины, для обеспечения приемлемой величины DN (диаметр х скорость вращения). Все подшипники смазываются жидким водородом. Система компенсации осевых нагрузок объединена со второй крыльчаткой центробежного насоса. Преднасос выполнен из алюминиевого сплава, крыльчатки из титанового сплава ТА5Е-ЕLI, турбина и вал из INCO 718. Характеристики насоса жидкого водорода приведены в табл.3.


Таблица 3. Характеристики турбонасосов



Окислителя (0)

Горючего (Н)

Частота вращения, мин-1

14500

37900

Массовый расход, кг/с

173,4

34,07

Давление на выходе, х 105 Па

125,7

150,5

Мощность на валу, кВт

2331

8680

Критическое значение избыточного давления, х 105 Па


1,5


0,42

Насос:


диаметр, мм

удельная скорость

КПД



205

0,545 (1490)

0,79



205

0,534 (1460)

0,77

Турбина:


диаметр, мм

отношение давлений

КПД



230

17

0,29



201

20,5

0,50



На рис.10 дан общий вид камеры сгорания (КС) ЖРД НМ60, где 1 – карданов подвес; 2 – воспламенитель; 3 – форсуночная головка; 4 – камера сгорания; 5 – основной сопловой блок; 6 – сопло большой степени расширения; 7 – каналы сброса охладителя сопла расширения.

На рис.11 приводится удельный импульс КС (ось ординат) (х 9,81 нсек/кг), по оси абсцисс отложена степень расширения сопла. Точки на графике соответствуют характеристикам кислородно-водородных ЖРД , где 1 – ЖРД J2S; 2 – ЖРД RL 10; 3 – ЖРД SSME; 4 – ЖРД НМ7А; 5 – ЖРД НМ7В; 6 – ЖРД НМ60. Характеристики КС данных ЖРД приведены также в табл.4.

На рис.12 представлена конструкция форсуночной головки, где 1 – подача жидкого кислорода; 2 – канал подачи жидкого кислорода; 3 – подача газообразного водорода; 4 – пористая пластина; 5 – форсунки;



Таблица 4.



J2S

RL10

SSME

HM7A

HM7B

HM60

Тяга, кН

1060

69

2090

60

60

860

Давление в камере сгорания, х 105 Па


54


27


205


30


35


100

Соотношение компонентов

5,5

5,0

6

5

5,3

5,1

Степень расширения сопла

27,5

57

77,5

62

82

110,5

Теоретический удельный импульс, Нсек/кг


4395


4529


4571


4542


4578


4501

Удельный импульс камеры сгорания, Нсек/кг


4209


4364


4464


4363


4398


4439



6 – перегородки гашения высокочастотных колебаний. Форсуночная головка содержит 516 форсунок, собранных на пористой плате, которая охлаждается выпотеванием водорода. Сравнение с другими криогенными форсуночными головками КС дано в табл.5. Перегородки гашения высокочастотных колебаний в КС образованы удлиненными форсунками. Конструкция камеры сгорания ЖРД НМ:) представлена на рис.13, где 1 - полости, предназначенные для повышения устойчивости горения; 2 – выходной трубопровод водорода; 3 – внутренняя стенка КС; 4 – никелевая оболочка КС; 5 – выходной трубопровод водорода; 6 – подача жидкого водорода. КС содержит сужающуюся часть (отношение площадей равно 5,8) регенеративно охлаждаемую водородом. Внутренняя часть КС, выполненная из медного сплава, имеет каналы охлаждения, которые закрыты никелевой оболочной. Трубопроводы выполнены из сплава INCONEL и сварены с никелевым корпусом. Основные характеристики КС даны в табл.6 в сравнении с другими криогенными КС.


Таблица 5. Характеристики форсуночной головки и камеры сгорания



J2S

RL10

SSME

HM7

MBB

HM60

Форсуночная головка:


Полный массовый расход, кг/с


Диаметр камеры, мм


Число форсунок


Расход через форсунку, г/с


Температура водорода,

К


КПД




242



470


614



375



105


0,98




18,5



262


216



85,6



180


0,985




469



450


600



782



850


0,99



13,9



180


90



70,7



136


0,986



45



182


90



470



190


0,98



195,8



415


516



380



95


0,989

Камера сгорания:


Внутренний диаметр, мм


Характерная длина, м


Отношение сжатия


Максимальная температура охладителя, К


Минимальное давление охладителя, х 105 Па


Максимальная

Температура стенки, К


Максимальный удельный теплопоток, Вт/см2


Давление, х 105 Па



470


0,62


1,58




60











54



262


0,98


2,95




150











27



450


0,8


2,96




254



98



740



12800


205



180


0,7


2,78




100



5,7



625



2900


35



182


2,3


6,95




140



100



690



16800


280



415


0,85


2,99




61



23,3



600



6400


100


Конструкция газогенератора (ГГ) представлена на рис.14, где 1 – подача жидкого кислорода; 2 – подача жидкого водорода; 3 – штуцеры датчиков температуры и давления. Давление в ГГ составляет 77 х 105 Па, температура – 910 К, соотношение компонентов – 0,9, массовый расход – 7,08 кг/сек.

Форсуночная головка ГГ имеет 120 форсунок. Воспламенение осуществляется пиротехническим воспламенителем, расположенным в центре головки. ГГ охлаждается жидким водородом, проходящим между стенками, и впрыскиваемым затем в ГГ. Для уменьшения нестабильности горения рядом с распылительной головкой имеются акустические полости.

Клапаны управления и рулевые машинки имеют гидравлический привод. Гидравлический насос смонтирован на оси трубонасоса окислителя. Остальные клапаны работают на гелии под давлением 23 х 105 Па.

Сравнение двигателя НМ60 с другими кислородно-водородными ЖРД дается в таблице 6.

Таблица 6.


SSME

НМ7А

НМ7В

LE-5

НМ60

J2

J2S

RL6-10 AЗ-3

Тяга в вакууме, кН


Удельный импульс, Нс/кг


Соотноше-ние компо- нентов


Давление в камере сгорания, х 105 Па


Отношение площадей


Массовый расход, кг/с


Длина, м


Диаметр, м


Время работы


Сухая масса, кг


Начало разработки


Начало эксплуата-ции


Разгонный блок, на котором двигатель использу-ется



2090




4464




6,0





207



77,5



468


4,24


2,39



480



3000



1972




1981




Space

Shu-

ttle




61.6




4338,6




4,43





30



62,5



14,2


1,71


0,938



563



149



1973




1979





Н8



62,7




4372,9




4,80





35



82,5



14,4


1,91


0,984



731



155



1980




1983





Н10



100



4334,7




5,5





35



140



23,1


2,7


1,65



370



230



1977




1984




Н1, втор.

ступ.




900




4364




5,1





100



110,5



196,7


4,0


2,52



291



1300



1984




1992





Н60








1044




4168




5,5





53,6



27,5



250


3,38


1,98



470



1542



1960




1966




SII-

SIVB



1180




4266




5,5





86



40



277


3,38


1,98



-



1556



-




-



67




4354




5,0





27



57



15,8


1,78


1,00



450



132



1958




1963




Centaur

SIV





Список литературы:




  1. Астронавтика и ракетодинамика, выпуск 18 за 1985 год

  2. Астронавтика и ракетодинамика, выпуск 25 за 1986 год


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Разговаривают две блондинки:
- Слышала, оказывается в Англии левостороннее движение?
- Так что получается: ихние мужики ходят не налево, а направо?
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по астрономии "Кислородно-водородный жидкостный ракетный двигатель НМ60", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru