Курсовая: Распределение интенсивности света при дифракции на круглом отверстии - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Распределение интенсивности света при дифракции на круглом отверстии

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Архив Zip, 86 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Министерство общего и профессионального образования Российской Федерации


Томский государственный университет систем управления и радиоэлектроники (ТУСУР)


Кафедра физики


РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ СВЕТА ПРИ ДИФРАКЦИИ НА КРУГЛОМ ОТВЕРСТИИ


Пояснительная записка к курсовому проекту по физике


ФЭТ КП.2.345. 001 ПЗ



Студент гр.

______



Руководитель проекта


СОДЕРЖАНИЕ


Введение 4

Теория явления 5

Постановка задачи 6

Математическая модель 7

Решение, анализ результатов 9

Выводы 13

Заключение 14

Список литературы 15

Приложение 1. 16


1. ВВЕДЕНИЕ


Еще в XV веке Леонардо да Винчи упоминал в своей работе о дифракционных явлениях, но только в XVII веке Гримальди подробно описал эти явления в своей книге. В то время самой правильной теорией описывающей распространение света считали корпускулярную теорию. Однако она не могла объяснить дифракцию. Точка зрения Гюйгенса, который впервые обосновал волновую теорию, совпадает с открытием Гримальди, хотя он, очевидно, не был знаком с его работами, выводя свою теорию. До 1818 года возможности волновой теории не позволяли объяснять явление дифракции. Однако в 1818 году Френель, исследование которого основывалось на волновой теории и состояло в синтезе идеи Гюйгенса о построении волнового фронта как огибающей сферических волн и принципа интерференции Юнга, объяснил не только “прямолинейность” распространения света, но и небольшие отклонения от “прямолинейности”, т.е. явления дифракции. Его труды были изданы в виде мемуаров, а в 1882 году исследованиям Френеля были даны строгие математические обоснования Кирхгофом. Таким образом, явление дифракции стало широко изучаться многими учеными.

Целью данного курсового проекта является изучение функции распределения интенсивности света при дифракции от круглого отверстия.


2. ТЕОРИЯ ЯВЛЕНИЯ


Дифракция – это совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями.

Общая схема явления дифракции представлена на рис.2.1.



Схема дифракции света на круглом отверстии


1

4


3 x

ц


a




2 5


l





1 – пучок падающего света, 2 – непрозрачная преграда, 3 – круглое отверстие, 4 – луч, дифрагированный под углом ц, 5 – экран.


Рис.2.1.

3. ПОСТАНОВКА ЗАДАЧИ


Цель данного курсового проекта нахождение и исследование функции распределения интенсивности света при дифракции от круглого отверстия. Её зависимость от длины волны источника света, от радиуса круглого отверстия, от координаты исследуемой точки на экране.

Данная задача решается при помощи использования функций Бесселя.


4. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ


Целесообразно, для круглого отверстия, использовать полярные координаты вместо прямоугольных. Пусть – полярные координаты произвольной точки отверстия:


(4.1)


(щ, ш) – координаты точки P в дифракционной картине, относящейся к геометрическому изображению источника, т.е.


(4.2)


Из определения полярных координат следует: щ =


Запишем интеграл, описывающий дифракцию Фраунгофера (полное возмущение в точке P), в виде


(4.3)


здесь C – величина, определяющаяся через величины связанные с положениями источника и точки наблюдения, однако, на практике она удобнее выражается через другие величины.


(4.4)


л – длина световой волны;

E – полная энергия, падающая на отверстие;

D – площадь отверстия ;

a – радиус отверстия;

k – волновое число .

Т.к. интенсивность выражается формулой:


(4.5)


интенсивность в центре картины (p = 0,q = 0) равна


(4.6)


5. РЕШЕНИЕ, АНАЛИЗ РЕЗУЛЬТАТОВ


Решение поставленной задачи произведем по методу, изложенному в [1].


Если a принять за радиус круглого отверстия, то дифракционный интеграл (4.3) примет вид


(5.1)


Теперь используя интегральное представление функций Бесселя (5.2)


(5.2)


сведем уравнение (5.1) к


(5.3)


используя рекуррентное свойство бесселевых функций (5.4)


(5.4)

дающее после интегрирования для n = 0

(5.5)

из (5.3) и (5.5) следует, что


(5.6)


,где D = ·a2. Следовательно, интенсивность определяется выражением


(5.7)


,где I0 = C2D2 = ED/л2 – в соответствии с (4.6)



Распределение интенсивности в окрестности геометрического изображения описывается функцией , график которой приведен в приложении 1.


Она имеет главный максимум y = 1 при x = 0 и с увеличением x осциллирует с постепенным уменьшением амплитуды подобно функции распределения интенсивности при дифракции на прямоугольном отверстии.

Интенсивность равна нулю (минимум) при значениях x, определяемых J1(x) = 0. Положения вторичных максимумов определяются значениями x, удовлетворяющими уравнению , или, используя формулу (5.4) – корнями уравнения J2(x) = 0.


Минимумы и максимумы не строго эквидистантны, при увеличении x, расстояния между последовательными максимумами или минимумами приближаются к  (см. рис.2. приложения 1)

Корни уравнения J1(x) = J2(x) = 0 для нахождения минимумов и максимумов функции приведены в табл.5.1.


J1(x) = 0 {y(x) = 0}

J2(x) = 0

y(x)

3.83171

0

1

7.01559

5.13564

0.0175

10.17347

8.41722

4.158E-3

13.32369

11.61993

1.60064E-3

16.47063

14.79609

7.79445E-4

19.61586

17.95982

4.37026E-4

22.76008

21.11698

2.69287E-4

Таблица 5.1 - Корни уравнения J1(x) = J2(x) = 0

На рис.3. приложения представлено семейство характеристик, описывающих конкретный случай, при a – const (a = 0.1·10-3 м) и различных длинах волн л (400 нм, 500 нм, 600 нм). Из графика видно, что угловой радиус щ прямо пропорционален длине волны падающего света.


На рис.4. приложения представлено семейство характеристик, описывающих конкретный случай, при л – const (л = 600·10-9 м) и различных радиусах отверстий a (1·10-4 м, 2·10-4 м, 3·10-4 м). Из графика видно, что угловой радиус щ обратно пропорционален радиусу отверстия. При увеличении радиуса отверстия характеристика принимает более резкий характер.




6. ВЫВОДЫ


В данном курсовом проекте была изучена функция распределения интенсивности света при дифракции от круглого отверстия и что она в действительности зависит от длины волны падающего пучка света, а также от радиуса отверстия. Можно также заметить, что интенсивность светового пучка резко падает по отношению к первому максимуму I0 и соотносится между собой как 1000 : 17.5 : 4.2 : 1.6 : 0.8.

Найденные результаты показывают, что наблюдаемая картина имеет вид светлого диска с центром в геометрическом изображении источника (p = 0, q = 0), окруженного светлыми и темными кольцами. Интенсивность светлых колец быстро уменьшается с увеличением радиуса и обычно только одно или два первых кольца достаточно ярки, чтобы их можно было наблюдать невооруженным глазом.


7. ЗАКЛЮЧЕНИЕ


Поставленная задача была решена, используя классические методы расчета, основанные на хорошо зарекомендовавших себя функциях Бесселя.

Случай дифракции параллельных световых волн на круглом отверстии имеет большое практическое значение, поскольку все оправы линз и объективов имеют обычно круглую форму, так что при расчете любого оптического инструмента приходится принимать в расчет дифракцию света на оправах линз.


СПИСОК ЛИТЕРАТУРЫ


1. Борн М., Вольф Э. Основы оптики. –М.: Наука, 1970. – 856 с.


2. Ландсберг Г.С. Оптика. –М.: Наука, 1976. – 928 с.


3. Орловская Л.В. Изучение дифракции лазерного излучения от круглого отверстия. –Томск, 1985. – 10 с. (Ротапринт ТИАСУРа).


ПРИЛОЖЕНИЕ 1


Уменьшенный график функции

Рис.1. Дифракция Фраунгофера на круглом отверстии.



Рис.2 Увеличенный график функции , начинающийся с первого минимума.



Рис.3. Семейство характеристик при различных длинах волн.


Рис.4 Семейство характеристик при различных радиусах отверстий.

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Во Вселенной бездельников нет – Земле и той приходится вертеться!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по физике "Распределение интенсивности света при дифракции на круглом отверстии", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru