Курсовая: Преобразование Фурье - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Преобразование Фурье

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Архив Zip, 80 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы



Kalmiik-forever

Глава I

Преобразование Фурье.


§1. Класс Шварца.

Преобразование Фурье отображает класс Шварца на себя.

Определение. Следующее множество комплекснозначных функций действительного переменного называется классом Шварца.

.

Класс Шварца иногда называют классом быстро убывающих функций.

Операции обычного сложения и умножения функции на число превращают класс Шварца в линейное векторное пространство:

,S(R), a, bК выполнено a+bS(R).

Отметим несколько простых свойств функций из класса Шварца.

  1. Если (x)S(R),то

  2. Если (x)S(R),то (x) ограничена на R.

  3. Если (x)S(R),то (x)=x(x)S.

  4. Если (x)S(R) и P(x) – многочлен, то P(x)(x)S.

  5. Если (x)S(R),то .

Доказательство. Первые два свойства сразу следуют из неравенств

.

Докажем свойство 3). Во первых, =xC?(R). Далее,

.

Свойство 4) получается из 3) последовательным применением. В самом деле, если P(x)=a0+a1x+…+anxn, то по свойству 3) имеем xiS(R), потому функция P(x)(x)=a0+a1(x)+a2(x2)+…+an(xn) принадлежит классу Шварца ввиду его линейности.

Свойство 5) доказывается аналогично свойству 3).


§2. Одномерное преобразование Фурье.

Определение. Функция

(1)

называется преобразованием Фурье функции (x) и обозначается F[]. Ясно, что не для всякой функции (x) интеграл (1) сходится, и потому не для всякой функции определено преобразование Фурье.

Если (интеграл Лебега), то будем говорить, что  принадлежит пространству L1(R).

Предложение 1. Преобразование Фурье функции (x) из L1(R) определено и ограничено по модулю на действительной оси.

Доказательство следует из равенства и (1):

Следствие. Преобразование Фурье определено для функций S(R).

Доказательство. Достаточно доказать, что S(R)L1(R). Заметим, что если S(R), то по свойству 4) функция (1+x2)S(R) и, следовательно, ограничена, а (1+x2)-1L1(R). Поэтому функция (1+x2)(1+x2)-1L1(R).


§3. Свойства преобразований Фурье функций из S(R).

1)

Доказательство получается дифференцированием в (1) под знаком интеграла. Это законно, так как интеграл, полученный после дифференцирования, мажорируется интегралом

сходимость которого вытекает из свойства 3): x(x)S(R)L1(R).

2) Если S(R), то F[]C(R).

Так как -ixS, то доказательство немедленно вытекает из 1).

Доказательство. Очевидно

теперь можно интегрировать по частям

Это и доказывает свойство 3).

Предложение 2. Преобразование Фурье функции из класса Шварца есть снова функция из класса Шварца.

Доказательство. Многократно применяя свойства 1) и 3), устанавливаем

По свойствам 4) и 5) класса Шварца функция

лежит в классе Шварца SL1 , и тогда, по предложению пункта 2, функция ограничена некоторой постоянной, которую мы обозначим Cn,m. Предложение доказано.


§4. Обратное преобразование Фурье.

Определение. Функция

называется обратным преобразованием Фурье функции (y) и обозначается F-1[].

Нетрудно проверить, что обратное преобразование Фурье функций из S(R) обладает свойствами, аналогичными прямому:

Докажем, что F-1[F[]]= для любой функции S. Для этого потребуется

Лемма. Пусть непрерывная функция h(y)L1(R) имеет почти всюду ограниченную производную. Пусть

такой набор точек, что на интервалах (yi,yi+1) функция h класса C2, i=1,2,…,n. Тогда для всех x, отличных от yi, i=1,2,…,n+1, справедливо соотношение

Доказательство. Так как h(y)L1 , то для всякого >0 найдется такое А, что

при всех t>0. Заметим, что

(3)

Тогда

Второе слагаемое в (4) заменой z= t(x - y) приводится к виду

и, следовательно, стремится к нулю при в силу сходимости интеграла (3). Для доказательства леммы осталось показать, что первое слагаемое в (4) также стремится .

Введем обозначение

Если h класса C2 в окрестности точки x, то из равенства

следует дифференцируемость функции g(y) в точке y = x. Итак, g(y) – кусочно-диференцируемая функция. Интегрируя по частям, устанавливаем

при Лемма доказана.

Предложение 3. F-1[F[]]= для любого S(R).

Доказательство.

Внутренний интеграл сходится равномерно по y[-n, n], поэтому возможна замена порядка интегрирования.

Теперь утверждение следует из леммы.

Из доказанного предложения вытекает, что преобразование Фурье взаимно-однозначно отображает класс Шварца в себя. Покажем что это отображение “на”. Определим оператор J переводящий функцию (x) в функцию (-x). Тогда очевидно равенство F=2JF-1, откуда, умножая справа на FJ/2 и используясь равенством JJ=1, будем иметь , где 1 справа надо понимать как тождественное отображение в S(R). Последнее равенство означает, что любая функция из S(R) есть преобразование Фурье некоторой функции.


§5. Класс Шварца в многомерном случае.

Мультииндексом =(1,…,n) будем называть набор из неотрицательных целых чисел. Порядком мультииндекса будем называть число



Глава II

Задача Коши для уравнения теплопроводности.

§1. Постановка задачи коши для уравнения теплопроводности.


Требуется найти функцию u(x,t), непрерывную при t0 и xR и класса C2 при t>0, удовлетворяющую уравнению

(1)

при t>0, xR и начальному условию

u(x,0)=(x). (2)

Задача (1),(2) имеет, вообще говоря, много решений. Поэтому обычно накладывают дополнительное условие, которому должно удовлетворять решение.

Теорема (Тихонова). Пусть u(x,t) – решение задачи (1),(2) с функцией (x)0. Пусть >0 существует постоянная C>0 такая, что

при всех xR и t0. Тогда u0.

Из этой теоремы следует, что при среди функций, растущих, грубо говоря, медленнее чем при любом >0, не может найтись более одного решения задачи (1),(2).

Эту теорему мы приводим без доказательства, но ниже докажем теорему единственности при более сильных ограничениях.


§2. Формальный поиск решения.

Применим преобразование Фурье

(3)

Выкладки этого пункта будем проделывать, не заботясь об обосновании. Дифференцируя (3) по t, устанавливаем:

Кроме того, по свойству 3) преобразования Фурье

Учитывая (1), имеем

(4)

Решая это обыкновенное дифференциальное уравнение с параметром y, находим

Где g(y) – произвольная функция. Используя (2), определяем g(y):


§3. Решение задачи Коши с начальной функцией из класса Шварца.

Теорема 2. Если S(R), то формула

(5)

дает решение задачи (1), (2), бесконечно дифференцируемое при t0.

Доказательство. Так как , то при любом t0 и обратное преобразование Фурье в формуле (5) определено. Дифференцируя (5) по t, имеем

(6)

так как , то интеграл (6) сходится равномерно при t0, и дифференцирование законно. Совершенно так же доказывается бесконечная дифференцируемость функции u(x,t) по t и x.

Дифференцируя (5) дважды по x, устанавливаем:

(7)

Из формул (6),(7) вытекает, что функция u(x,t) удовлетворяет уравнению (1). Справедливость условия (2) очевидна. Теорема доказана.


§4. Фундаментальное решение уравнения теплопроводности.

Преобразуем формулу (5) к более удобному ”явному” виду. Для этого запишем ее в интегралах

меняем порядок интегрирования

(8)

В формуле (8) внутренний интеграл есть преобразование Фурье от функции при значении аргумента –(x-z), поэтому из (9.2) имеем

Подставляя это в (8), получим

(9)

Функцию

называют фундаментальным решением уравнения теплопроводности. Легко проверяются следующие свойства этой функции:


§5. Решение задачи с непрерывной ограниченной начальной функцией.

Теорема 3. Пусть (z) ограничена и непрерывна на вещественной оси. Тогда формула (9) дает решение задачи (1),(2).

Доказательство. Продифференцируем (9) под знаком интеграла

(10)

Чтобы обосновать законность такого дифференцирования, достаточно показать равномерную сходимость по x интеграла (10), для чего произведем замену

Из ограниченности функции  следует равномерная сходимость интеграла как по xR, так и по t>.

Совершенно так же доказывается бесконечная дифференцируемость функции u(x, t) по x и t при t>0. Из свойства 3) фундаментального решения следует, что u есть решение уравнения (1).

Для доказательства (2) снова сделаем замену переменной интегрирования в (9):

Так как последний интеграл сходится равномерно по x и t, то возможен предельный переход под знаком интеграла

Теорема доказана.


§6. Единственность решения в классе ограниченных функций.

Теорема 4. Пусть ограниченная функция u(x, t) является решением задачи (1), (2) с начальной функцией 0. Тогда u(x, t)0.

Доказательство. Рассмотрим функцию

(x, t)=(x2+3a2t)+u(x, t),

где >0,  - любого знака. Легко проверить, что

(11)

Так как функция u ограничена, то функция v(x, y) в области t>0 достигает минимума в некоторой точке (x0, t0). Покажем, что v(x0, t0)0. Пусть, напротив v(x0, t0)<0. Тогда, очевидно, t0>0, так как v(x, 0)0. Как необходимые условия минимума имеем соотношения

которые противоречат (11).

Итак, v(x, t)0 при всех x и t0. При фиксированных x и t,переходя к пределу при 0 в неравенстве

(x2+3a2t)+u(x, t)0,

получаем u(x, y)0. Ввиду произвольности знака  отсюда следует u=0.Теорема доказана


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Мальчик, научившийся играть на трубе, выкуривает сигарету за две затяжки.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по математике "Преобразование Фурье", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru