Реферат: Кривые и поверхности второго порядка - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Кривые и поверхности второго порядка

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 2049 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




ЭЛЛИПС.





Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фик­сированных точек плоскости, называе­мых фокусами, есть постоянная величина; требуется, чтобы эта по­стоянная была больше расстояния между фокусами. Фокусы эллипса при­нято обозначать через F1 и F2.

Пусть М—произвольная точка эллипса с фокусами F1 и F2. Отрезки F1М и F2М (так же как и длины этих отрезков) назы­ваются фокальными радиусами точки М. По­стоянную сумму фокаль­ных ра­диусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем:

F1М + F2М = 2а.

Расстояние F1 и F2 между фокусами обозначают через 2с. Пусть дан какой-нибудь эллипс с фоку­сами F1, F2.

Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 и r2 расстояния от точки М до фокусов (r1 = F1М, r2 = F2М). Точка М будет нахо­диться на данном эллипсе в том и только в том случае, когда

r1 + r2 = 2а.

Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r1 и r2 их выраже­ниями через координаты х, у.

Заметим, что так как F1 F2 = 2с и так как фокусы F1 и F2 распо­ложены на оси Ох симметрично от­носительно начала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); при­няв это во внимание находим:

Заменяя r1 и r2, получаем:

Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки

М (х; у), когда точка М лежит на этом эллипсе. Возведём обе части равенства в квадрат, полу­чим:

или

Возводя в квадрат обе части последнего равенства, найдем:

а2х2 — 2а2сх + а2с2 + а2у2 = а4 — 2а2сх + с2х2 ,

откуда

2—с22 + а2у2 = а22—с2).

Здесь мы введем в рассмотрение новую величину

;

а>с, следовательно, а2—с2>0 и величина b—вещественна.

b2 = a2—c2,

тогда

b2x2 + a2y2 = a2b2 ,

или

.

Это уравнение называется каноническим уравнением эллипса.

Уравнение

,

определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка.

Эксцентриситетом эллипса называется отношение рас­стояния между фокусами этого эллипса к длине его большой оси; обозначив эксцентриситет буквой ?, получаем:

.

Так как с<a, то ?<1> т. е. эксцентриситет каждого эллипса меньше единицы.

Заметим, что c2 = a2 b2; поэтому

;

отсюда

и

Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, определяется эксцен­триситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше 1— ?2, тем меньше, следова­тельно, отношение ; значит, чем больше эксцентриситет, тем более эллипс вытянут. В случае окружности b=a и ?=0.

Рассмотрим какой-нибудь эллипс и введем декартову прямо­угольную систему координат так, чтобы этот эллипс определялся каноническим уравнением

Предположим, что рассматриваемый эллипс не является окружностью, т. е. что а?b и, следова­тельно, ?=0. Предположим еще, что этот эллипс вытянут в направлении оси Ох, т. е. что а>b.

Две прямые, перпендикулярные к большой оси эллипса и рас­положенные симметрично относи­тельно центра на расстоянии от него, называются директрисами эллипса.

Уравнения директрис в выбранной системе координат имеют вид

и .

Первую из них мы условимся называть левой, вторую—правой. Так как для эллипса ?<1> то . Отсюда следует, что правая директриса расположена правее правой вершины эл­липса; аналогично, левая ди­ректриса расположена левее его левой вершины. Частным случаем эллипса является окружность. Её уравнение имеет вид:

х2 + у2 = R2.




















ГИПЕРБОЛА.

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, на­зываемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению; кроме того, требуется, чтобы она была меньше расстояния между фокусами и отлична от нуля. Фокусы гиперболы принято обозначать через F1 и F2, а расстояние между ними—через 2с.

Пусть М—произвольная точка гиперболы с фокусами F1 и F2. Отрезки F1М и F2М (так же, как и дли­ны этих отрезков) называ­ются фокальными радиусами точки М и обозначаются че­рез r1 и r2 (r1= F1М, r2= F2М). По определению гиперболы разность фокаль­ных радиусов ее точки М есть по­стоянная величина; эту постоян­ную принято обозначать через 2а.

Пусть дана какая-нибудь гипербола с фокусами F1 и F2. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у, а фокальные радиусы F1М и F2М через r1 и r2. Точка М будет находиться на (данной) гиперболе в том и только в том случае, когда

r1r2= ±2а.

Так как F1 F2=2с и так как фокусы F1 и F2 располо­жены на оси Ох симметрично относительно на­чала координат, то они имеют соответственно координаты (—с; 0) и (+с; 0); приняв это во внима­ние находим:

, .

Заменяя r1 и r2, получаем:

.

Это и есть уравнение рассматриваемой гиперболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на гиперболе.

Возведём обе части равенства в квадрат; получим:

,

или

.

Возводя в квадрат обе части этого равенства, найдем:

c2x2 – 2a2cx + a4 = a2x2 – 2a2cx + a2c2 + a2y2 ,

откуда

(c2 – a2)x2 – a2y2 = a2(c2 – a2) .

Здесь мы введем в рассмотрение новую величину

;

с>a, следовательно, с2—а2>0 и величина b—вещественна.

b2= с2—а2,

тогда

b2x2a2y2 = a2b2 ,

или

.

Уравнение

,

определяющее гиперболу в некоторой системе декартовых прямо­угольных коорди­нат, есть урав­нение второй степени; таким образом, гипербола есть линия второго порядка.

Эксцентриситетом гиперболы называется отношение рас­стояния между фокусами этой гиперболы к расстоянию между ее вершинами; обозначив эксцентриситет бук­вой ?, получим:

.

Так как для гиперболы с>a, то ?>1; т. е. эксцентриситет каждой гиперболы больше единицы. Заме­тив, что c2 = a2+ b2, находим:

;

отсюда

и .

Следовательно, эксцентриситет определяется отношением , а от­ношение в свою очередь оп­ределяется эксцентриситетом. Таким образом, эксцентриситет гиперболы ха­рактеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше ?2—1, тем меньше, следо­вательно, отношение ; значит, чем меньше эксцентриситет гиперболы, тем бо­лее вытянут ее ос­новной прямоугольник (в направлении оси, соединяющей вершины). В случае равносторонней ги­перболы a=b и ?=?2.

Рассмотрим какую-ни­будь гиперболу и введем декартову прямоугольную систему координат так, чтобы эта гипербола определялась каноническим уравнением

.

Две прямые, перпендикулярные к той оси гиперболы, кото­рая ее пересекает, и расположенные симметрично относительно центра на расстоянии от него, называются директрисами гипер­болы.

Уравнения директрис в вы­бранной системе координат имеют вид

и .

Первую из них мы усло­вимся называть левой, вто­рую —правой.

Так как для гиперболы ? >1, то .

Отсюда следует, что правая директриса расположена между центром и правой вершиной гипер­болы; ана­логично, левая директриса расположена между центром и левой вершиной.























ПАРАБОЛА.

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фо­ку­сом, равно расстоянию до некоторой фиксированной прямой, называемой ди­ректрисой (пред­полагается, что эта прямая не проходит через фокус).

Фокус параболы принято обозначать буквой F, расстояние от фокуса до ди­ректрисы—буквой p. Величину р называют параметром параболы.

Пусть дана какая-нибудь парабола. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r рас­стояние от точки М до фокуса (r=FM), через dрасстояние от точки М до дирек­трисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда

r=d.

Чтобы получить искомое уравнение, нужно заменить переменные r и d их выраже­ниями через те­кущие координаты х, у.

Заметим, что фокус F имеет координаты ; приняв это во внимание, находим:

.

Обозначим через Q основание перпендикуляра, опущенного из точки М на директрису. Очевидно, точка Q имеет координаты отсюда, получаем:

число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы, где находится фокус, т. е. должно быть , откуда .

Заменяя r и d, найдем

Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют коорди­наты точки

М (х; у), когда точка М лежит на данной параболе.

Возведем обе части равенства в квадрат; получим:

или

у2=2рх.

Это уравнение называется каноническим уравнением параболы. Уравнение у2=2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй сте­пени; таким образом, парабола есть линия второго порядка.

































Министерство образования РФ


Пензенская Государственная Архитектурно-Строительная

Академия









РЕФЕРАТ

Тема: «Кривые и поверхности второго порядка»





Выполнил: Богданович Ольга

Специальность: ОБД

Обозначение: 240400 Группа: ОБД-11

Проверил: Фадеева Г.Д.

Оценка:








Пенза – 2000.
















Кривые

второго

порядка






























Поверхности

второго

порядка


















Эллипсоид































Однополостный гиперболоид































Двухполостный гиперболоид

























Конус

























Эллиптический параболоид

























Гиперболический параболоид



























Эллиптический цилиндр

























Гиперболический цилиндр

























Параболический цилиндр


























1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
- А чегой-то рубль так колбасит?
- Слезает с нефтяной иглы!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Кривые и поверхности второго порядка", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru