Реферат: Гидравлика - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Гидравлика

Банк рефератов / Геология и геодезия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 263 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Открытые русла могут быть естественными или искусственными.

К естественным открытым руслам относятся реки и ручьи, к искусственным– каналы, безнапорные трубы (например, дренажные),гидротехнические тунели и т. д.

Особенность движения в открытом русле заключается в том, что поток здесь ограничен не со всех сторон, а име­ет свободную поверхность, все точки которой находятся под воздействием одинакового внешнего давления (атмос­ферного). Равномерное движение жидкости в открытых каналах или в трубопроводах с частично заполненным по­перечным сечением устанавливается, когда геомет­ри­чес­кий уклон трубопровода или дна канала имеет постоянное зна­чение по всей дли­не и форма поперечного сечения не ме­няется. Шероховатость стенок канала также должна иметь постоянное значение.

При отмеченных условиях возможно существование равномерного движения. Однако для реализации равно­мерного движения необходимо еще, чтобы попе­реч­ное сече­ние потока в канале было также постоянным по всей длине канала.

Следует отметить, что безнапорное движение воды представляет значительно более сложное явление по срав­нению с напорным движением, так как наличие сво­бод­ной поверхности потока приводит к изменению площадей живых сечений по длине последнего даже при незначительных препятствиях. Это требует рас­смот­ре­ния процессов волно–образования, заставляет в некоторых случаях счи­тать­ся с влиянием сил поверхностного натяжения и т. п.

При гидравлических расчетах открытых каналов и без­напорных трубо­про­во­дов ставится задача определения ско­рости движения жидкости в канале, площа­ди сечения и наивыгоднейшей формы канала.

При равномерном движении жидкости в открытом рус­ле гидравлический iг и пьезометрический iп уклоны, а так­же уклон дна русла iп равны между собой:

i?­= i?= i? (5. 29)

С учетом равенства (5. 29) открытые каналы и безна­порные трубопроводы рас­считываются по формулам, ко­торые были выведены ранее для напорных тру­бо­проводов (формулы Шези и Павловского). Значения коэффициента шеро­хо­ватости п для широкого диапазона условий приведе­ны в приложении 2.

Как следует из формулы Шези, канал будет обладать наивыгоднейшей фор­мой, если при заданной площади по­перечного сечения он будет иметь наимень­ший смоченный периметр. При этом канал будет обеспечивать наибольший расход. Наиболее выгодными профилями каналов являют­ся круг и полукруг. На прак­тике чаще применяются каналы трапецеидальной формы, поскольку в грун­те полукруглое сечение достаточно трудно.

Более подробные сведения о движении воды в открытых руслах можно почерп­нуть в специальной литературе.

Местные сопротивления

При движении реальной жидкости помимо потерь на трение по длине потока могут возникать и так называв??? ??????? ?????? ??????. ??????? ?????????, ?????­??? ? ?????????????, –??????? ???? ?????????????? ???????: ?????? 3, ????­???? 2, ??????? ? ???­??????? ????????????, ???????? 1, ??????? ? ?. ?., ??­??????????? ?????????? ??????? ??????? ? ????????? ?????????? ? ???­???­?????? ????????????.

??????? ????????????? ???????? ????????? ???????? ???????? ???????? ?? ???????? (??????? ? ??????????), ??????????? (??????) ??? ???????? ?. ???­??­???­??? ???????????? (???????),??????? ????? ????????? ?? ????????? ???­????? ????? ?????????, ??????????­?? ? ??????? ??????????????, ? ???­??? ? ??????? ?????, ??????? ? ???????????? ????? ?????? ????? ?????????­?????? ????????? ?????????? ????????.

На практике местные потери hмп определяют по формуле Вейсбаха

??? ? («?????») – ???????????? ???????????, ???????­??? ????????????? ????­???? ????????????? (???????? ? ????????????? ??????? ?????); ? – ????­??? ???????? ???????? ???????? ? ??????? ?????? ?? ??????? ?????­?????????.

???? ?? ?????-???? ???????????? ?????? ?????? ??­???????? ???????? ????? ???­????? ????? ??????? ?????­?????????, ?????????? ????????? ???????? ????­??????­?? ???????? ?????????????. ??? ???? ???? ?????????? ??????????? ?1/?2 – (s1/s2)2, ??? ?1, ?2 –???????????? ??????? ?????????????, ?????????­???­??? ???????? s1и s.

? ????????? ??????? ?????? ?????? ? ??????? ?????­????????? ?????? ????­??­???? ?? ??? ?????????? ????­????????? ????? – ????? ??????? ??????? ?????­???­???? ??????? ????????, ?? ??????? ?????? ?????? ?? ???­??? h?? ????? (????­??­??????) ?????? ?????? h??, ???? ?????? ??????????????? ??????? ??­???­???­??????. ??­??????????? ????? LЭ????? ???? ??????? ?? ????????? ?????? ??­??­?? ?? ?????, ???????????? ?? ??????? ?????-???????? h??=?(LЭ/d)[v2/(2g)], ? ??????? ?????? ??????, ??????????? ???????? ???????? h?.?.= ?[v2/(2g)].

Приравнивая правые части этих формул, находим

LЭ= (?/?)d.

Сложение потерь напора

Во многих случаях при движении жидкостей одновре­менно наблюдаются потери напора на трение по длине и местные потери напора. В этих случаях полная потеря напора определяется как арифметическая сумма потерь всех видов. Например, полная потеря напора в трубопро­воде длиной L, диаметром d, имею­щем ? местных сопротивлений,

Выражение, стоящее в скобках, называют коэффициентом сопротивления сис­темы и обозначают через ?сист. Таким образом,

Местные сопротивления можно заменить эквивалент­ными им длинами. В рас­смат­риваемом случае эквива­лентная длина, соответствующая всем ? местным сопро­тивлениям

(*)

Тогда, обозначая L+LЭ=LП, можно определять сумму потерь по формуле Дарси–­Вейсбаха. Для этого в нее вместо действительной длины трубопровода L вводят приведенную длину LП. Таким образом,

(**)

Формулы (*) и (**) обычно используют при гидрав­лическом расчете трубопроводов.

Графоаналитические методы расчета трубопроводов

При гидравлическом расчете трубопроводов широко используют графо­ана­ли­ти­ческие методы. Их применение значительно облегчает и упрощает решение неко­торых сложных задач, а в отдельных случаях (например, при исследовании сов­местной работы нескольких центробежных насосов на один общий трубо­провод) является един­ственно возможным приемом, позволяющим получить иско­мое решение.

Предположим, что в простейшем случае имеется трубопровод диаметром d и длиной L и по нему перекачивается жидкость, кинематическая вязкость ? кото­рой известна. Потери напора в данном трубопроводе пред ставляют собой функ­цию только расхода жидкости, т. е. ?H=f(Q).

Изобразим эту зависимость графически:

Для этого, произвольно задаваясь рядом значений Q вычислим соответст­вую­щие им значения потерь напора ?Н и отложим (в масштабе) по оси абсцисс зна­че­ния Q, а по оси ординат – вычисленные значения ?H. Соединив полученные точки плавной линией, получим кривую из изменения потери напора в трубо­про­воде в зависимости от расхода. Эту кривую называют характеристической кри­вой, или гидравлической характеристикой трубопровода.

В общем случае характеристическая кривая трубо провода состоит из отдель­ных участков разной формы – прямолинейного участка для ламинарного режима (при малых Re) и параболической кривой для турбулентного режима (в области боль­ших Re), в свою очередь состоящей из участков разной крутизны (т. е. Пара­бол с различными показателями степени) в разных зонах этого режима.

Рассмотрим построение характеристик для более сложных трубопроводов. Для простоты будем считать что они лежат в одной горизонтальной плоскости.

При последовательном соединении трубопроводов; предварительно строят ха­рак­теристики отдельных последовательно включенных участков.

На рис. изображены характеристики I, II, III участков соответственно 1, 2, 3. Так как при последовательном соединении потери напора суммируют, сложим кри­вые I, II, III по вертикали. Для этого проведем ряд прямых, параллельных оси орди­нат. Каждая из них пересечет эти кривые. Сложим ординаты точек пересе­че­ний этих прямых с кривыми. Получим ряд точек – а, b, с, ..., принадле-жащих новой кривой I + II + III, которая представляет собой искомую суммар-ную ха­рак­теристику всего рассматриваемого трубопровода.

При параллельном соединении также прежде всего следует построить харак­тери­стики отдельных параллельно включенных участков.

Пусть кривые II, III, IV — такие характеристи­ки участков 2, 3, 4. Как уже ука­зы­валось, при параллель­ном соединении общий расход определяется как сумма рас­ходов в отдельных параллельно включенных участ­ках. Потери напора в них оди­на­ковы, а полные потери напора определятся как потеря напора в одном из пе­речисленных участков. Для построения суммарной ха­рактеристики необ­хо­димо провести ряд горизонтальных прямых, параллельных оси абсцисс, и сложить при по­стоянных ординатах абсциссы точек их пересечения с характе­рис­ти­ками отдельных участков. В результате получим ряд точек а, b, с,..., опре­деля­ющих суммар­ную характеристику II+III+IV трубопровода при па­рал­лель­ном соединении.

Таким образом, для построения суммарной характе­ристики сложного трубо­про­вода необходимо сложить характеристики отдельных участков (при парал­лель­ном соединении по горизонтали, при последовательном — по вертикали).

В общем случае, когда трубопровод состоит из ряда участков, соединенных между собой как последователь­но, так и параллельно, суммарную харак­те­рис­ти­ку всего трубопровода находят путем последова­тельного сложения предвари­тель­но достроенных характеристик всех отдельных участков. Сначала сумми­руют характеристики параллельно включенных участков 2, 3, 4 по горизонтали, а за-тем их суммарную харак­теристику по вертикали с характеристиками уча­стков 1 и 5, включенных последовательно.

В тех случаях, когда отдельные участки тру­бопровода лежат в раз­ных плос­костях, при по­строении и суммировании характеристик необходи­мо учи­ты­вать также раз­ность высот ?z между начальной и конечной точками участков. Харак­теристики этих участков следует строить не от начала координат, а из точек, от­стоя­щих от него по оси ординат на величину ?z. Значение ?z нужно откла­дывать вверх, если конечная точка участка располо–жена выше начальной точки (подъ­ем жидкости), и вниз, если она находится ниже начальной точки (опускание жид­кости). Аналогично следует поступать и в тех случаях, когда жидкость пода­ется в емкости с повышенным или понижен–ным давлением. В первом случае высо­ту ?p/pg, соответствующую разности начального и конечного дав­лений р1 – р2 = ?р, откладывают вверх, а во втором – вниз.

По построенным гидравлическим характеристикам трубопроводов легко опре­де­ляются необходимый перепад напоров ?H по заданному расходу Q или расход по за­данному перепаду напоров. Например, если для простого трубопровода пост­роена его гидравлическая характеристика, то, отложив перепад на­поров ?H = ?z на оси ординат, по соответствующей ему точке характеристики можно опре­делить расход Q. Ана­логично определяют необходимый перепад напоров при заданном расходе.

Гидравлическую характеристику трубопровода ис­пользуют также при подборе центро­бежного насоса.

Для определения необходимого диаметра трубопрово­да по заданному Q и строят, задаваясь разными зна­чениями d, график зависимости ?H = f (d). По задан­ному значению ?H определяют соответствующий ему диаметр трубопро­вода d.

Программы расчетов для построения зависимости ?H = hтр = f (Q) и ?H = hтр = f (d) на программируемых калькуляторах типа «Электроника», БЗ-34, МК-61 и им подобных приведена в прил. 2.













Содержание

Движение воды в русле канала. 1

Местные сопротивления 2

Сложение потерь напора 3

Графоаналитические методы расчета трубопроводов 4

Содержание 8

ОАО «ГАЗПРОМ» 9

Волгоградский колледж газа и нефти 9

Реферат по гидравлике 9

Выполнил: студент гр. 02ЭГП-1С 9

Ирушкин В. Ю. 9

Волгоград 2002 9




ОАО «ГАЗПРОМ»

Волгоградский колледж газа и нефти












Реферат по гидравлике













Выполнил: студент гр. 02ЭГП-1С

Ирушкин В. Ю.











Волгоград 2002

1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Залетел скворец в скворечник. Огляделся — однушка. Говно хата!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru