Реферат: Морфологический анализ цветных (спектрозональных) изображений - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Морфологический анализ цветных (спектрозональных) изображений

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 8893 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы




Морфологический анализ цветных (спектрозональных) изображений


1. Введение

Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных1 оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.

Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям2 и оказались достаточно эффективными, [5-11].

Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.


2. Цвет и яркость спектозонального изображения.

Рассмотрим некоторые аспекты теории цвета так называемых многоспектральных (спектрозональных, [13]) изображений, аналогичной классической колориметрии [12]. Будем считать заданными n детекторов излучения со спектральными чувствительностями j=1,2,...,n, где ?(0,) - длина волны излучения. Их выходные сигналы, отвечающие потоку излучения со спектральной плотностью e(?)0, ?(0,), далее называемой излучением, образуют вектор , w???=. Определим суммарную спектральную чувствительность детекторов , ?(0,), и соответствующий суммарный сигнал назовем яркостью излучения e???. Вектор назовем цветом излучения e???. Если цвет e??? и само излучение назовем черным. Поскольку равенства и эквивалентны, равенство имеет смысл и для черного цвета, причем в этом случае - произвольный вектор, яркость оторого равна единице. Излучение e????назовем белым и его цвет обозначим если отвечающие ему выходные сигналы всех детекторов одинаковы:

.

Векторы , и ,

, удобно считать элементами n-мерного линейного пространства . Векторы fe, соответствующие различным излучениям e???, содержатся в конусе . Концы векторов содержатся в множестве , где ? - гиперплоскость

.

Далее предполагается, что всякое излучение , где E - выпуклый конус излучений, содержащий вместе с любыми излучениями все их выпуклые комбинации (смеси) Поэтому векторы в образуют выпуклый конус

, а векторы .

Если то и их аддитивная смесь

. Для нее

. (1)

Отсюда следует

Лемма 1. Яркость fe и цвет e любой аддитивной смеси e??? излучений e1(),...,em(), m=1,2,... определяются яркостями и цветами слагаемых.

Подчеркнем, что равенство , означающее факт совпадения яркости и цвета излучений e??? и , как правило, содержит сравнительно небольшую информацию об их относительном спектральном составе. Однако замена e??? на в любой аддитивной смеси излучений не изменит ни цвета, ни яркости последней.

Далее предполагается, что вектор w??? таков, что в E можно указать базовые излучения , для которых векторы , j=1,...,n, линейно независимы. Поскольку цвет таких излучений непременно отличен от черного, их яркости будем считать единичными, , j=1,...,n. В таком случае излучение характеризуется лишь цветом , j=1,...,n.

Для всякого излучения e??? можно записать разложение

, (1*)

в котором - координаты в базисе ,

или, в виде выходных сигналов детекторов излучения, - , где , , - выходной сигнал i-го детектора, отвечающий j-ому излучению j(), i, j=1,...,n. Матрица - стохастическая, поскольку ее матричные элементы как яркости базовых излучений неотрицательны и , j=1,...,n. При этом яркость и вектор цвета , , j=1,...,n, (конец которого лежит в ?) определяются координатами j и цветами излучений

, j=1,...,n, и не зависят непосредственно от спектрального состава излучения e???.

В ряде случаев белое излучение естественно определять исходя из базовых излучений, а не из выходных сигналов детекторов, считая белым всякое излучение, которому в (1*) отвечают равные координаты: .

Заметим, что слагаемые в (1*), у которых j<0>3 физически интерпретируются как соответствующие излучениям, "помещенным" в левую часть равенства (1*) с коэффициентами -j>0: . В такой форме равенство (1*) представляет “баланс излучений”.

Определим в скалярное произведение и векторы , биортогонально сопряженные с : , i,j=1,...,n.

Лемма 2. В разложении (1*) , j=1,...,n, . Яркость , где , причем вектор ? ортогонален гиперплоскости ?, так как , i,j=1,...,n.

Что касается скалярного проиведения , то его естественно определять так, чтобы выходные сигналы детекторов были координатами fe в некотором ортонормированном базисе

. В этом базисе конус . Заметим, что для любых векторов и, тем более, для

, 4.

Пусть Х - поле зрения, например, ограниченная область на плоскости R2, или на сетке , спектральная чувствительность j-го детектора излучения, расположенного в точке

; - излучение, попадающее в точку . Изображением назовем векторнозначную функцию

(2**)

Точнее, пусть Х - поле зрения, (Х, С, ?) - измеримое пространство Х с мерой ???C - -алгебра подмножеств X. Цветное (спектрозональное) изображение определим равенством

, (2)

в котором почти для всех , , - -измеримые функции на поле зрения X, такие, что

.

Цветные изображения образуют подкласс функций лебеговского класса функций . Класс цветных изображений обозначим LE,n.

Впрочем, для упрощения терминологии далее любой элемент называется цветным изображением, а условие

(2*)

условием физичности изображений f().

Если f??? - цветное изображение (2), то , как нетрудно проверить, - черно-белое изображение [2], т.е. , . Изображение , назовем черно-белым вариантом цветного изображения f???, а цветное изображение , f(x)0, xX - цветом изображения f???. В точках множества ?={xX: f(x)=0} черного цвета ?(x), x?, - произвольные векторы из , удовлетворяющие условию: яркость ?(x)=1. Черно-белым вариантом цветного изображения f??? будем также называть цветное изображение b(), имеющее в каждой точке Х ту же яркость, что и f???, b(x)=f(x), xX, и белый цвет, (x)=b(x)/b(x)=, xX.


3. Форма цветного изображения.

Понятие формы изображения призвано охарактеризовать форму изображенных объектов в терминах характерности изображений, инвариантных относительно определенного класса преобразований изображения, моделирующих меняющиеся условия его регистрации. Например, довольно часто может меняться освещение сцены, в частности, при практически неизменном спектральном составе может радикально изменяться распределение интенсивности освещения сцены. Такие изменения освещения в формуле (2**) выражаются преобразованием , в котором множитель k(x) модулирует яркость изображения в каждой точке при неизменном распределении цвета. При этом в каждой точке у вектора f(x) может измениться длина, но направление останется неизменным.

Нередко изменение распределения интенсивности освещения сопровождается значительным изменением и его спектрального состава, но - пространственно однородным, одним и тем же в пределах всей изображаемой сцены. Поскольку между спектром излучения e и цветом  нет взаимно однозначного соответствия, модель сопутствующего преобразования изображения f(x) в терминах преобразования его цвета (). Для этого определим отображение A():, ставящее в соответствие каждому вектору цвета подмножество поля зрения в точках которого изображение , имеет постоянный цвет .

Пусть при рассматриваемом изменении освещения и, соответственно, ; предлагаемая модель преобразования изображения состоит в том, что цвет преобразованного изображения должен быть также постоянным на каждом множестве A(), хотя, вообще говоря, - другим, отличным от . Характекрным в данном случае является тот факт, что равенство влечет . Если - самое детальное изображение сцены, то, вообще говоря, на различных множествах A() и A() цвет изображения может оказаться одинаковым5.

Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.

Для определения понятия формы цветного изображения f() на удобно ввести частичный порядок  , т.е. бинарное отношение, удовлетворяющее условиям: 1)

, 2) , , то , ; отношение  должно быть согласованным с определением цветного изображения (с условием физичности), а именно, , если . Отношение  интерпретируется аналогично тому, как это принято в черно-белой морфологии[2], а именно, означает, что изображения f????и?g??? сравнимы по форме, причем форма ?g???? не сложнее, чем форма f???. Если и , то f??? и g??? назовем совпадающими по форме (изоморфными), f??? ~ g???. Например, если f??? и g??? - изображения одной и той же сцены, то g???, грубо говоря, характеризует форму изображенных объектов не точнее (подробнее, детальнее), чем f????, если .

В рассматриваемом выше примере преобразования изображений ??если между множествами A(), и A(), существует взаимно-однозначное соответствие, т.е., если существует функция

, такая, что A(())= A(),, причем, если . В этом случае равенства и эквивалентны, и изоморфны и одинаково детально характеризуют сцену, хотя и в разных цветах.

Если же не взаимно однозначно, то A()=U A() и . В этом случае равенство влечет (но не эквивалентно) , передает, вообще говоря, не все детали сцены, представленные в .

Пусть, скажем, g??? - черно-белый вариант f???, т.е. g(x)=f(x) и g(x)/g(x)=, xX. Если преобразование - следствие изменившихся условий регистрации изображения, то, естественно, . Аналогично, если f?????g??????изображения одной и той же сцены, но в g?????вследствие неисправности выходные сигналы некоторых датчиков равны нулю, то . Пусть F - некоторая полугруппа преобразований , тогда для любого преобразования FF

, поскольку, если некоторые детали формы объекта не отражены в изображении f???, то они, тем более, не будут отражены в g???.

Формой изображения f??? назовем множество изображений , форма которых не сложнее, чем форма f`???, и их пределов в (черта символизирует замыкание в ). Формой изображения f????в широком смысле назовем минимальное линейное подпространство , содержащее

. Если считать, что для любого изображения , то это будет означать, что отношение  непрерывно относительно сходимости в в том смысле, что

.

Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.


4. Форма кусочно-постоянного (мозаичного) цветного изображения.

Во многих практически важных задачах форма объекта на изображении может быть охарактеризована специальной структурой излучения, достигающего поле зрения X в виде здесь

- индикаторные функции непересекающихся подмножеств Аi, i=1,…...,N, положительной меры поля зрения Х, на каждом из которых функции ,

, j=1,...,n, i=1,...,N, непрерывны. Поскольку согласно лемме 2

, (3)

то цветное изображение fe???, такого объекта характеризует его форму непрерывным распределением яркости и цвета на каждом подмножестве Ai, i=1,...,N. Для изображения , где , также характерно напрерывное распределение яркости и цвета на каждом Ai, если , - непрерывные функции.

Если, в частности, цвет и яркость постоянны на Ai, i=1,...,N, то это верно и для всякого изображения , если не зависит явно от

. Для такого изображения примем следующее представление:

, (4)

его черно-белый вариант

(4*)

на каждом Ai имеет постоянную яркость , и цвет изображения (4)

(4**)

не меняется на Ai и равен , i=1,...,N.

Поскольку для реальных изображений должно быть выполнено условие физичности (2*), , то форму изображения (4), имеющего на различных множествах Аi имеет несовпадающие яркости и различные цвета , определим как выпуклый замкнутый в конус:

. (4***)

v(a), очевидно, содержится в nN мерном линейном подпространстве

, (4****)

которое назовем формой a() в широком смысле.

Форму в широком смысле любого изображения a(), у которого не обязательно различны яркости и цвета на различных подмножествах Ai ,i=1,...,N, определим как линейное подпространство , натянутое не вектор-функции Fa(),FF, где F - класс преобразований

, определенных как преобразования векторов a(x)Fa(x) во всех точках xX; здесь F - любое преобразование . Тот факт, что F означает как преобразование , так и преобразование , не должен вызывать недоразумения.

Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма a() (4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах Аi, i=1,…………..,N. Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L(a()), если речь идет о форме в широком смысле.

Лемма 3. Пусть {Аi} - измеримое разбиение X: .

Изображение (3) имеет на каждом подмножестве Ai :

 постоянную яркость и цвет , если и только если выполняется равенство (4);

 постоянный цвет , если и только если в (3) ;

 постоянную яркость fi , i=1,...,N, если и только если в (3) не зависит от , i=1,…...,N.

Доказательство . На множестве Ai яркость и цвет изображения (3) равны соответственно6

, , i=1,.…..,N.

Если выполнено равенство (4), то и от не зависят. Наоборот, если и , то и , т.е. выполняется (4).

Если , то цвет не зависит от . Наоборот, пусть не зависит от . В силу линейной независимости координаты ?(i)(x) не зависят от , т.е. и, следовательно, где - яркость на A i и . Последнее утверждение очевидно 

Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств Ai , i=1,...,N, поля зрения X.

Итак, пусть в согласии с леммой 3

, (5)

где, - индикаторная функция Ai, , функция gi??? задает распределение яркости

(6)

в пределах Ai при постоянном цвете

, i=1,...,N, (7)

причем для изображения (5) цвета (i), i=1,.…..,N, считаются попарно различными, а функции g(i), i=1,.…..,N, - удовлетворяющими условиям i=1,.…..,N.

Нетрудно заметить, что в выражениях (5),(6) и (7) без потери общности можно принять условие нормировки , позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С учетом нормировки распределение яркости на Ai задается функцией а цвет на Ai равен

(7*)

Форму изображения (5) определим как класс всех изображений

(8)

,

каждое из которых, как и изображение (5), имеет постоянный цвет в пределах каждого Ai, i=1,...,N. Форма таких изображений не сложнее, чем форма f(?) (5), поскольку в изображении на некоторых различных подмножествах Ai, i=1,...,N, могут совпадать значения цвета, которые непременрно различны в изображении f(?) (5). Совпадение цвета на различных подмножествах Ai, i=1,...,N ведет к упрощению формы изображения по сравнению с формой f(?) (5). Все изображения , имеющие различный цвет на различных Ai, i=1,...,N, считаются изоморфными f?????и между собой), форма остальных не сложнее, чем форма f???. Если , то, очевидно, .

Если в (8) яркость , то цвет на Ai считается произвольным (постоянным), если же в точках некоторого подмножества , то цвет на Ai считается равным цвету на , i=1,...,N.

Цвет изображения (8) может не совпадать с цветом (5). Если же по условию задачи все изображения , форма которых не сложнее, чем форма , должны иметь на Ai, i=1,...,N, тот же цвет, что и у то следует потребовать, чтобы , в то время, как яркости остаются произвольными (если , то цвет на Ai определяется равным цвету f??? на Ai, i=1,...,N).

Нетрудно определить форму любого, не обязательно мозаичного, изображения f????в том случае, когда допустимы произвольные изменения яркости при неизменном цвете (x) в каждой точке . Множество, содержащее все такие изображения

(9)

назовем формой в широком смысле изображения , у которого f(x)0, -почти для всех , [ср. 2]. является линейным подпространством , содержащем любую форму

, (10)

в которой включение определяет допустимые значения яркости. В частности, если означает, что яркость неотрицательна: , то - выпуклый замкнутый конус в , принадлежащий .

Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.


5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.

Рассмотрим вначале задачи приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач позволит построить форму изображения в том случае, когда считается, что

для любого преобразования , действующего на изображение как на вектор в каждой точке и оставляющего элементом , т.е. изображением. Форма в широком смысле

определяется как оператор наилучшего приближения изображения

изображениями

где - класс преобразований , такой, что . Иначе можно считать, что

(10*)

а - оператор наилучшего приближения элементами множества , форма которых не сложнее, чем форма . Характеристическим для является тот факт, что, если f(x)=f(y), то для любого .


5.1. Приближение цветного изображения изображениями, цвет и яркость которых постоянны на подмножествах разбиения поля зрения X.

Задано разбиение , требуется определить яркость и цвет наилучшего приближения на каждом . Рассмотрим задачу наилучшего приближения в цветного изображения f() (2) изображениями (4), в которых считается заданным разбиение поля зрения X и требуется определить

из условия

(11)

Теорема 1. Пусть . Тогда решение задачи (11) имеет вид

, i=1,...,N, j=1,...,n, (12)

и искомое изображение (4) задается равенством

. (13)

Оператор является ортогональным проектором на линейное подпространство (4****) изображений (4), яркости и цвета которых не изменяются в пределах каждого Ai , i=1,...,N.

Черно-белый вариант (4*) цветного изображения (4) является наилучшей в аппроксимацией черно-белого варианта цветного изображения f???????, если цветное изображение (4) является наилучшей в аппроксимацией цветного изображения f???????. Оператор , является ортогональным проектором на линейное подпространство черно-белых изображений, яркость которых постоянна в пределах каждого .

В точках множества цвет (4**) наилучшей аппроксимации (4) цветного изображения f??? (2) является цветом аддитивной смеси составляющих f??? излучений, которые попадают на

.

Доказательство. Равенства (12) - условия минимума положительно определенной квадратичной формы (11), П - ортогональный проектор, поскольку в задаче (11) наилучшая аппроксимация - ортогональная проекция f??? на . Второе утверждение следует из равенства

, вытекающего из (13). Последнее утверждение следует из равенств

,i=1,...,N вытекающих из (12) и равенства (1), в котором индекс k следует заменить на xX. 

Замечание 1. Для любого измеримого разбиения ортогональные проекторы и определяют соответственно форму в широком смысле цветного изображения (4), цвет и яркость которого, постоянные в пределах каждого , различны для различных , ибо , и форму в широком смысле черно-белого изображения, яркость которого постоянна на каждом и различна для разных ,[2].

Если учесть, условие физичности (2*), то формой цветного изображения следует считать проектор на выпуклый замкнутый конус (4***)

Аналогично формой черно-белого изображения следует считать проектор на выпуклый замкнутый конус изображений (4*), таких, что [2]. Дело в том, что оператор определяет форму

изображения (4), а именно

- множество собственных функций оператора . Поскольку f() - наилучшее приближение изображения изображениями из

, для любого изображения из и только для таких - . Поэтому проектор можно отождествить с формой изображения (4).

Аналогично для черно-белого изображения a()

,7 [2]. И проектор можно отождествить с формой изображения (4*), как это сделано в работах [2,3].

Примечания.

Формы в широком смысле не определяются связью задач наилучшего приближения элементами и

, которая известна как транзитивность проецирования. Именно, если оператор наилучшего в

приближения злементами выпуклого замкнутого (в и в ) конуса , то . Иначе говоря, для определения наилучшего в приближения элементами

можно вначале найти ортогональную проекцию изображения на

, а затем спроецировать в на . При этом конечномерный проектор для каждого конкретного конуса может быть реализован методом динамического программирования, а для многих задач морфологического анализа изображений достаточным оказывается использование лишь проектора П .

Форма в широком смысле (4***) изображения (4) полностью определяется измеримым разложением , последнее, в свою очередь определяется изображением

,

если векторы попарно различны. Если при этом , то форма в широком смысле может быть определена и как оператор П ортогонального проецирования на , определенный равенством (13).

Посмотрим, каким образом воспользоваться этими фактами при построении формы в широком смысле как оператора ортогонального проецирования на линейное подпространство (10*) для произвольного изображения . Пусть - множество значений и

- измеримое разбиение X , порожденное , в котором

- подмножество X , в пределах которого изображение имеет постоянные яркость и цвет, определяемые вектором , если

.

Однако для найденного разбиения условие , вообще говоря, невыполнимо и, следовательно, теорема 1 не позволяет построить ортогональный проектор П на . Покажем, что П можно получить как предел последовательности конечномерных ортогональных проекторов. Заметим вначале, что любое изображение можно представить в виде предела (в ) должным образом организованной последовательности мозаичных изображений

(*)

где - индикатор множества , принадлежащего измеримому разбиению

В (*) можно, например, использовать так называемую исчерпывающую последовательность разбиений [], удовлетворяющую следующим условиям

- - C - измеримо, ;

- N+1-oe разбиение является продолжением N-го, т.е. для любого , найдется i=i(j),, такое, что ;

- минимальная -алгебра, содержащая все , совпадает с C.

Лемма (*). Пусть - исчерпывающая последователь-ность разбиений X и - то множество из , которое содержит . Тогда для любой C-измеримой функции

и -почти для всех [ ]. 

Воспользуемся этим результатом для построения формы в широком смысле П произвольного изображения . Пусть - минимальная -алгебра, относительно которой измеримо , т.е. пусть , где - прообраз борелевского множества , B - -алгебра борелевских множеств . Заменим в условиях, определяющих исчерпывающую последовательность разбиений, C на и выберем эту, зависящую от , исчерпывающую последовательность ( - измеримых) разбиений в лемме (*).

Теорема (*). Пусть ,

- исчерпывающая последовательность разбиений X, причем - минимальная -алгебра, содержащая все и П - ортогональный проектор , определенный равенством ,

Тогда

1) для любого -измеримого изображения и почти для всех , ,

2) для любого изображения при ), где П - ортогональный проектор на

.

Доказательство. Первое утверждение непосредственно следует из леммы (*) и определения . Для доказательства второго утверждения заметим, что, так как A(N)(N+1) - продолжение разбиения A(N), N=1,2,..., то последовательность проекторов П(N), N=1,2,..., монотонно неубывает: и потому сходится (поточечно) к некоторому ортогональному проектору П. Так как - множество всех -измеримых изображений и их пределов (в ), а в силу леммы (*) для любого

-измеримого изображения

, то для любого изображения и для любого , ибо -измеримо, N=1,2,... 

Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.

Заданы векторы f1,...,fq, требуется определить разбиение , на множествах которого наилучшее приближение принимает соответственно значенния f1,...,fq. Рассмотрим задачу приближения цветного изображения f???, в которой задано не разбиение поля зрения X, а векторы в , и требуется построить измеримое разбиение поля зрения, такое, что цветное изображение - наилучшая в аппроксимация f???. Так как

, (14*)

то в Ai следует отнести лишь те точки , для которых , =1,2,...,q, или, что то же самое, =1,2,...,q. Те точки, которые согласно этому принципу могут быть отнесены к нескольким множествам, должны быть отнесены к одному из них по произволу. Учитывая это, условимся считать, что запись

, (14)

означает, что множества (14) не пересекаются и .

Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение , в котором

(15)

и звездочка указывает на договоренность, принятую в (14). Определим оператор F, действующий из в по формуле , , i=1,...,q. Очевидно, F всегда можно согласовать с (14) так, чтобы включения и , i=1,...,q, можно было считать эквивалентными.

Теорема 2. Пусть - заданные векторы Rn. Решение задачи

наилучшего в приближения изображения f??? изображениями имеет вид , где - индикаторная функция множества . Множество

определено равенством (15). Нелинейный оператор , как всякий оператор наилучшего приближения удовлетворяет условию F=F, т.е. является пректором.

Замечание 2. Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа , i=1,...,q, которые можно считать упорядоченными согласно условию , то, как показано в [3], искомое разбиение X состоит из множеств

где , и имеет мало общего с разбиением (14).

Замечание 3. Выберем векторы fi, i=1,..,q единичной длины: , i=1,...,q. Тогда

. (16)

Множества (16) являются конусами в Rn , ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение изображения f??? инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например ), в частности, относительно образования теней на f???.

Замечание 4. Для любого заданного набора попарно различных векторов оператор F, приведенный в теореме 2, определяет форму изображения, принимающего значения соответственно на измеримых множествах (любого) разбиения X. Всякое такое изображение является неподвижной (в ) точкой F: , если

, все они изоморфны между собой. Если некоторые множества из - пустые, или нулевой меры, соответствующие изображения имеют более простую форму.

Иначе говоря, в данном случае формой изображения является множество всех изображений, принимающих заданные значения на множествах положительной меры любого разбиения X, и их пределов в .

Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения f() изображениями , в котором требуется определить как векторы , так и множества так, чтобы

.

Следствие 1.

Пусть Di ,i=1,...,N, - подмножества Rn (15), П - ортогональный проектор (13), , где . Тогда необходимые и достаточные условия

суть следующие: , где , .

Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть - исходные векторы в задаче (14*), - соответствующее оптимальное разбиение (14), F2(1)- оператор наилучшего приближения и - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения П(1) (13) обеспечит не менее точное приближение f(), чем F(1):

. Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение и построим оператор наилучшего приближения F(2). Тогда . На следующем шаге по разбиению строим и оператор П(3) и т.д.

В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы

из f(X) и построим по формуле (15) разбиение Rn . Для каждого q=1,2,... образуем разбиение E(N(q)), множества , j=1,...,N(q), которого образованы всеми попарно различными пересечениями множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2... -измеримы и является продолжением


5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения поля зрения X.

Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.

Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.

Запишем изображение (5) в виде

(17)

где .

Пусть A1,...,AN - заданное разбиение X, - индикаторная функция Ai, i=1,...,N. Рассмотрим задачу наилучшего в приближения изображения изображениями (17), не требуя, чтобы

(18)

Речь идет о задаче аппроксимации произвольного изображения изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN поля зрения X, (см. Лемму 3).

Так как

то минимум S (19) по достигается при

, (20)

и равен

(21)

Задача (18) тем самым сведена к задаче


. (22)

В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор

. (23)

Максимум (неотрицательной) квадратичной формы на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен и достигается, например, при

Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем8 ?(Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения изображениями g() (17) является изображение


(24)

Операторы ,i=1,...,N, и - нелинейные (зависящие от f()) проекторы: Пi проецирует в Rn векторы на линейное подпространство , натянутое на собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению ?i,

; (25)

П проецирует в изображение на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

(19*).

Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi неотрицательны и среди них ?i - наибольшее.

Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f():

(26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению ?i. Чтобы определить следует решить задачу на собственные значения для оператора :

.

Поскольку rank=1, имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно ?i, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для 

Лемма 4. Для любого изображения решение (24) задачи (18) наилучшего приближения единственно и является элементом .

Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению ?i, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

,

составляющие содержание леммы. Действительно, если то согласно (23) , поскольку включение означает, что; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

Так как матрица симметрическая и неотрицательно определенная () она имеет n неотрицательных собственных значений, которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , . 

Замечание 4.

Если , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .

Наоборот, если , то

, т.е. определяется выражением (17), в котором .

Итак, пусть в изображении g() (17) все векторы f1,.…..,fN попарно не коллинеарны, тюею цвета всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле изображения (17) есть множество решений уравнения

,, (27)

где , fi - собственный вектор оператора Фi: , отвечающий максимальному собственному значению ?i, i=1,...,N . В данном случае , если и только если выполнено равенство (27).

Оператор П (24), дающий решение задачи наилучшего приближения