Реферат: Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста

Банк рефератов / Радиоэлектроника

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 1515 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра РТС








РЕФЕРАТ

На тему:

"Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста"














МИНСК, 2008


Метод статистической линеаризации


Метод основан на замене нелинейного преобразования процессов статистически эквивалентными им линейным преобразованиями. Нелинейный элемент заменяется линейным эквивалентом (рис.1). В результате замены система линеаризуется, что позволяет использовать методы исследования линейных систем.

Замена нелинейного преобразования линейным является приближенной и справедливой лишь в некоторых отношениях. Поэтому не существует однозначной эквивалентности при использовании различных критериев.

В частности, если нелинейность определяется безинерционной зависимостью вида

, (1)

используется два критерия эквивалентности.



Рис.1.

Первый критерий предполагает равенство на выходе нелинейного элемента и его линейного эквивалента математических ожиданий и дисперсий процессов.

Второй критерий – минимум среднего квадрата разности процессов на выходе нелинейного элемента и его линейного эквивалента.

Процесс на входе и выходе нелинейного элемента представим в виде:

; (2)

, (3)

где? математическое ожидание процесса на выходе НЭ;

? центрированная случайная составляющая.

Процесс на выходе линейного эквивалента представляется в следующем виде:

, (4)

где ? коэффициент передачи линейного эквивалента по математическому ожиданию; ? коэффициент передачи по центрированной случайной составляющей.

Воспользуемся первым критерием эквивалентности:

. (5)

Из этих уравнений находим

;

,

где ? плотность вероятности процесса на входе нелинейного элемента.

- коэффициент передачи линейного эквивалента по центрированной случайной составляющей (по первому критерию).

По второму критерию эквивалентности:

;

;

;

;

Для определения и , при которых выполняется условие эквивалентности, найдем частные производные и приравняем их нулю:

;

; ; .

При расчете этих коэффициентов полагают, что распределение на входе нормальное:

;

Определив величины

; .

для типовых нелинейностей, заменяют последние коэффициентами передачи линейного эквивалента и анализируют систему линейными методами.

Для основных типов нелинейностей и нормальном распределении входного процесса коэффициенты рассчитаны и представлены в виде табличных значений. В частности, для характеристики релейного типа (рис.2)


Рис.2. Характеристика релейного типа:

;

коэффициенты равны:

; ; ;


Метод гармонической линеаризации


Основы метода.

Метод используется для исследования нелинейных систем, описываемых дифференциальными уравнениями различного порядка. Эффективен для расчета параметров собственных колебаний в системе, используется также для анализа точности при гармоническом задающем воздействии.

Рассмотрим метод применительно к расчету параметров собственных колебаний в нелинейной системе.

Разделим систему на линейную часть и нелинейное звено (рис.3).


Рис.3. Модель нелинейной системы.

Уравнение линейной части:

,(6)

При возникновении автоколебаний процесс на выходе линейной части не является строго гармоническим, но мы будем полагать, что линейное звено является фильтром нижних частот и подавляет все гармоники, за исключением первой. Это предположение называется гипотезой фильтра. Если она не подтверждается, то ошибки при применении гармонической линеаризации могут быть значительными.

.

Пусть

; . (7)

Представим в виде ряда Фурье:

; (8)

Полагаем, что

.

Это справедливо, если симметрична относительно начала координат и отсутствует внешнее воздействие. Полагая, что высшие гармоники подавляются, будем искать только и

Из уравнения (7) находим:

; . (9)

Подставив (8. 20) в (8. 19) и ограничив ряд слагаемыми первой гармоники, получим:

(10)

где

(11)

Таким образом, нелинейное уравнение для заменили приближенным линейным уравнением (11) для первой гармоники.

и называют гармоническими коэффициентами передачи нелинейного звена. Коэффициенты и в рассматриваемом случае зависят от амплитуды, при более сложной нелинейной зависимости зависят еще и от частоты.

Рассчитанные значения коэффициентов гармонической линеаризации для типовых нелинейностей можно найти в учебниках и справочной литературе.

Передаточная функция разомкнутой системы может быть представлена в следующем виде:

; ;

где ? эквивалентная передаточная функция нелинейно - го звена.

Частотная передаточная функция разомкнутой системы

.

Характеристическое уравнение

.

Модуль частотной передаточной функции нелинейного звена

.

Фазочастотная характеристика

; ()

Модуль определяет отношение амплитуд, а фазовый сдвиг на выходе относительно входного сигнала.

Если симметрична относительно начала координат, однозначна и не имеет гистерезиса, то и тогда

.

Часто при анализе используется величина обратная . Она называется гармоническим импедансом нелинейного звена:

.

Расчет автоколебаний по критерию Найквиста

В соответствии с критерием Найквиста строится годограф частотной передаточной функции разомкнутой системы

Условием возникновения в системе колебаний является прохождение амплитудно-фазовой характеристики через точку (-1,j0) комплексной плоскости. Для определения условий прохождения годографа через эту точку приравняем

.

Чтобы решить это уравнение можно, задавая значение амплитуды, строить амплитудно-фазовую характеристику(рис.8.18) Значение амплитуды а=А, при которой АФХ пройдет через точку (-1,j0) будет соответствовать амплитуде собственных колебаний. Значение частоты определяют по частоте в точке (-1,j0).



Рис.4. Амплитудно-фазовая характеристика нелинейной системы.

Тогда искомое колебание

.

При нелинейной зависимости вида передаточную функцию разомкнутой системы можно представить в виде

. (12)

Это уравнение решается графическим методом (рис.5).

Строим амплитудно-фазовую характеристику линейного звена и кривую импеданса нелинейного звена. Определяем точку пересечения. Частоту определим по АФХ линейного звена в точке пересечения. Амплитуду А определим по кривой импеданса нелинейного звена.

Чтобы определить являются ли колебания устойчивыми автоколебаниями, нужно задать приращение амплитуды ; при этом точка на импедансе смещается влево вниз. Это будет соответствовать уменьшению, следовательно, кривая годографа ПФ разомкнутой системы не будет охватывать точку с координатами . Поэтому амплитуда колебаний начнет уменьшаться, и система вернется в исходное состояние. То же будет и при отрицательном приращении.

Критерий устойчивости периодического режима сводится к тому, чтобы часть кривой соответствующая меньшим амплитудам, охватывалась амплитудно-фазовой характеристикой линейной части.

При отсутствии в системе периодических режимов (решения уравнения (8.23)) можно предположить, что система будет устойчива.

Условие устойчивости равновесного состояния (отсутствия автоколебаний): при устойчивой или нейтральной в разомкнутом состоянии линейной части её АФХ не охватывает годограф .


ЛИТЕРАТУРА


1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.

2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. А. Бесекерского. - М.: Высш. шк., 2005.

3. Первачев С.В. Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.

4. Цифровые системы фазовой синхронизации Под ред. И. Жодзишского – М.: Радио, 2000.



1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Сейчас пучок зелёного лука стоит столько, что с ним будет не стыдно прийти к девушке на 8 Марта.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по радиоэлектронике "Метод статистической и гармонической линеаризации. Расчет автоколебаний по критерию Найквиста", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru