Реферат: Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 730 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия


Количественный АЭА основан на зависимости между концентрацией элемента и интенсивностью его спектральных линий, которая определяется формулой Ломакина:

,

где I - интенсивность спектральной линии определяемого элемента; c - концентрация; a и b - константы.

Величины a и b зависят от свойств аналитической линии, ИВ, соотношения концентраций элементов в пробе, поэтому зависимость обычно устанавливается эмпирически для каждого элемента и каждого образца. На практике обычно пользуются методом сравнения с эталоном.

При количественных определениях используют в основном фотографический способ регистрации спектра. Интенсивность спектральной линии, получаемой на фотопластинке, характеризуется ее почернением:

,

где S - степень почернения фотопластинки; I0 - интенсивность света проходящего через незачерненную часть пластинки, а I - через зачерненную, т.е. спектральную линию. Измерение почернения спектральной линии проводят по сравнению с почернением фона или по отношению к интенсивности линии сравнения. Полученная разность почернений (DS) прямо пропорциональна логарифму концентрации (с):

DS = K lgc.

При методе трех эталонов на одной фотопластинке фотографируют спектры трех эталонов с известным содержанием элементов и спектр анализируемого образца. Измеряют почернение выбранных линий. Строят градуировочный график, по которому находят содержание изучаемых элементов.

В случае анализа однотипных объектов применяют метод постоянного графика, который строят по большому числу эталонов. Затем в строго одинаковых условиях снимают спектр образца и одного из эталонов. По спектру эталона проверяют не произошло ли смещение графика. Если смещения нет, то неизвестную концентрацию находят по постоянному графику, а если есть, то величину смещения учитывают с помощью спектра эталона.

При количественном АЭА погрешность определения содержания основы составляет 1-5%, а примеси - до 20%. Визуальный метод регистрации спектра быстрее, но менее точен, чем фотографический.

По аппаратурному оформлению можно выделить АЭА с визуальной, фотографической и фотоэлектрической регистрацией и измерением интенсивности спектральных линий.

Визуальные методы (регистрация с помощью глаза) можно использовать только для исследования спектров с длинами волн в области 400 - 700 нм. Средняя спектральная чувствительность глаза максимальна для желто-зеленого света с длиной волны ~ 550 нм. Визуально можно с достаточной точностью установить равенство интенсивностей линий с ближайшими длинами волн или определить наиболее яркую линию. Визуальные методы делятся на стилоскопические и стилометрические.

Стилоскопический анализ основан на визуальном сравнении интенсивностей спектральных линий анализируемого элемента (примеси) и близлежащих линий спектра основного элемента пробы. Например, при анализе сталей обычно сравнивают интенсивности спектральных линий примеси и железа. При этом используют заранее известные стилоскопические признаки, в которых равенству интенсивности линий определенной аналитической пары соответствует определенная концентрация анализируемого элемента.

Стилоскопы используют для экспресс-анализа, для которого не требуется высокой точности.6-7 элементов определяют за 2-3 мин. Чувствительность анализа 0,01-0,1%. Для анализа применяют как стационарные стилоскопы СЛ-3... СЛ-12, так и переносные СЛП-1... СЛП-4.

Стилометрический анализ отличается от стилоскопического тем, что более яркую линию аналитической пары ослабляют при помощи специального устройства (фотометра) до установления равенства интенсивностей обеих линий. Кроме того, стилометры позволяют сближать в поле зрения аналитическую линию и линию сравнения, что значительно повышает точность измерений. Для анализа применяют стилометры СТ-1... СТ-7.

Относительная погрешность визуальных измерений 1 – 3%. Их недостатками являются ограниченность видимой области спектра, утомительность, отсутствие объективной документации о проведении анализа.

Фотографические методы основаны на фотографической регистрации спектра с помощью специальных приборов-спектрографов. Рабочая область спектрографов ограничена длиной волны ~ 1000 нм, т.е. их можно использовать в видимой области и УФ. Интенсивность спектральных линий измеряют по степени почернения их изображения на фотопластинке или фотопленке.

Для изменения степени почернения применяют микрофотометры. В микрофотометрах фотопластинка освещается потоком света от лампы накаливания. Изображение освещенного участка фотопластинки проектируется на экран с узкой раздвижной щелью в центре. Перемещая фотопластинку, выводят на щель изображение нужной аналитической линии так, чтобы за щель попадал только свет, прошедший через эту линию. Для измерения интенсивности светового потока за щелью расположен фотоэлемент, соединенный с гальванометром. Показания гальванометра пропорциональны интенсивности падающего на фотоэлемент светового потока. Сначала на щель выводят изображение прозрачного участка фотопластинки и отмечают показания гальванометра a0:

(a0= K?I0). Затем на щель проектируют изображение измеряемой спектральной линии и отмечают a (a=K?I). Степень почернения спектральной линии рассчитывают как

.

Концентрацию определяемого элемента находят по градуировочному графику зависимости =, построенному с помощью стандартных образцов.

Преимуществом фотографического метода по сравнению с визуальным является объективность и документальность, а недостатки те же - трудоемкость, относительно невысокая точность (1-3% от определяемой концентрации) и небольшая скорость (определение 4-5 элементов за 30 мин). Для фотографического анализа применяют призменные (ИСП-32, ИСП-28, ИСП-30, ИСП-5, КС-5, КСА-1) и дифракционные (ДФС-3, ДФС-8, ДФС-9, ДФС-13, СТЭ-1) спектрографы.

Применение фотоэлектрических методов позволило ускорить анализ, повысить его точность и полностью автоматизировать.

Фотоэлектрический метод основан на фотоэлектрической регистрации и фотометрии спектра анализируемой пробы. Световой поток аналитической спектральной линии определяемого элемента после отделения его монохроматором от всего остального спектра преобразуют ФЭУ в электрический сигнал (тока или напряжения). Для выделения нужной линии в фокальной поверхности прибора перед фотоэлементом (ФЭУ) располагают выходную щель. С целью одновременного определения содержания всех анализируемых элементов в современных приборах, реализующих фотоэлектрический метод, в фокальной плоскости устанавливают до 70 выходных щелей. Такие приборы называют полихроматорами или квантометрами. Световые потоки аналитических линий, падая на фотокатоды ФЭУ, вызывают эмиссию электронов, и в анодной цепи протекает ток. Измерительная схема квантометра работает по принципу накопления зарядов на конденсаторе. Для анализа пробы выбирают по одной аналитической линии из спектра каждого анализируемого элемента и одну или несколько линий спектра основы или другого внутреннего стандарта. Электронно-измерительное устройство последовательно измеряет напряжение, накопленное на конденсаторах, и выдает на выходные приборы (вольтметр, самописец-потенциометр) величину напряжения, пропорциональную логарифму отношения интенсивностей линий определяемого элемента и линии сравнения, т.е. пропорциональную концентрации элемента в пробе. Величину концентрации находят по градуировочному графику или записывают в процентах, снимая показания с диаграммной ленты самописца. Процесс измерения от включения квантометра до получения результатов полностью автоматизирован. Отечественный квантометр ДФС-36 (36 щелей) можно настроить на анализ 12 различных типов сталей и сплавов по 12 программам. Число элементов, одновременно определяемых по одной программе, от 1 до 35. Диапазон измеряемых концентраций от десятков до 10-4%. Время определения присутствия 10 элементов в одном образце ~2 мин. Для проведения исследования квантометр предварительно градуируют по стандартным образцам.

Для анализа продуктов металлургического производства применяют отечественные квантометры (ДФС-10М, ДФС-31, ДФС-41) а также импортные квантометры (английские Е-6000, Е-1000, американские ARL - 29500, ARL - 31000 и др.).


Эмиссионная фотометрия пламени (пламенная фотометрия)


Пламенная фотометрия является одним из вариантов эмиссионного спектрального анализа и основана на измерении интенсивности света, излучаемого возбужденными частицами (атомами или молекулами) при введении вещества в пламя горелки.

Принцип метода заключается в том, что раствор анализируемого вещества распыляют с помощью сжатого воздуха в пламени горелки, где происходит ряд сложных процессов, в результате которых образуются возбужденные атомы или молекулы. За счет энергии пламени, легко возбуждаемым атомом вещества (K, Na, Ca), сообщается избыточная энергия. Атомы этих металлов переходят в возбужденное состояние, характеризующееся переходом валентных (наружных) электронов на более высокие энергетические уровни. Через 10-8 секунды происходит их возврат на основные уровни, что сопровождается выделением порций энергии (квантов света). Совокупность квантов света приводит к образованию светового потока с длиной волны, характерной для атомов K, Na, Ca. Их излучение направляют в спектральный прибор, выделяющий излучение определяемого элемента светофильтрами или другими монохроматорами. Попадая на детектор (фотоэлемент), излучение вызывает фототок, который после усиления измеряют стрелочным гальванометром. Нахождение содержания определяемого вещества проводят с помощью градуировочного графика зависимости величины фототока от концентрации элемента, который строят по результатам анализа серии стандартных растворов. Отклонение от линейности градуировочного графика наблюдается в области больших (больше 100 мкг/мл у калия) и малых концентраций. В первом случае происходит самопоглощение света невозбужденными атомами, а во втором - уменьшается доля свободных атомов за счет смещения равновесия реакции ионизации атомов.

Наиболее распространенными отечественными приборами для пламенной фотометрии являются:

а) фильтровой пламенный фотометр типа ФПЛ-1 для определения Na, K, Ca из одного раствора прямым методом;

б) пламенный фотометрический анализатор жидкости ПАЖ-1 для определения микроколичеств Na, K, Ca и Li при их совместном присутствии в растворе;

в) пламенный фотометр FLAPHO-4 для определения Li, Na, K, Ca и Rb.

Поскольку спектры эмиссии атомов значительно проще молекулярных, то именно методы, основанные на их получении, стали широко применяться для массового многоэлементарного экспресс-анализа.

Пи АЭА анализируемая проба вещества вводится в источник возбуждения спектрального прибора. В источнике возбуждения данная проба подвергается сложным процессам, заключающимся в плавлении, испарении, диссоциации молекул, ионизации атомов, возбуждении атомов и ионов.

Возбуждённые атомы и ионы через очень короткое время (~10-7-108с) самопроизвольно возвращаются из неустойчивого возбуждённого состояния в нормальное или промежуточное состояние. Это приводит к излучению света с частотой n и появлению спектральной линии.

Общую схему атомной эмиссии можно представить так:

А + Е ® А* ® А + hn

Степень и интенсивность протекания этих процессов зависит от энергии источника возбуждения (ИВ).

Наиболее распространёнными ИВ являются: газовое пламя, дуговые и искровые разряды, индукционносвязанная плазма (ИСП). Их энергетической характеристикой можно считать температуру.

Сравнительная характеристика различных ИВ приведена в табл.2.3.1.


Таблица 1.

Сравнительная характеристика различных источников возбуждения

Источник возбуждения

Темпратура, 0С

Возбуждаемые элементы

Пламя:

1800

Щелочные металлы

а) светильный газ - воздух



б) ацетилен - воздух

2200

Щелочные и щелочноземельные металлы

в) ацетилен - кислород

3100

Практически все металлы

Дуга постоянного тока

3500 - 7000

Металлы, С, N

Дуга переменного тока

5000 - 8000

Металлы, С, N и некоторые металлоиды

Высоковольтная искра

10000 (в факеле)

Почти все элементы

Индукционно связанная плазма (ИСП)

3000 (в канале)

Все элементы


Методами АЭА можно исследовать твёрдые и жидкие пробы. Способы введения вещества в ИВ приведены в табл.2.3.2.

Различают качественный, полуколичественный и количественный АЭА.

Качественный анализ проводят путём идентификации спектральных линий в спектре пробы, т.е. установления их длины волны, интенсивности и принадлежности тому или иному элементу.

Для расшифровки спектра и определения длины волны анализируемой линии пользуются спектрами сравнения, в которых длины волн отдельных линий указаны. Чаще всего для этой цели используют хорошо изученный спектр железа, имеющий характерные группы линий с известными l в разных областях длин волн.


Таблица 2.

Способы введения в ИВ

Источник возбуждения

Фазовый характер образца

Способ введения

Пламя

Жидкость

Распыление

Дуга

Жидкость

Нанесение на торец графит электрода


Порошок

Нанесение в графитовый электрод


Металлический слиток

Изготовление электродов из анализируемого образца

Искра

Жидкость

Впрыскивание в искровой промежуток вращающимся колёсиком


Порошок

Изготовление прессованных брикетов


Металлический слиток

Введение в ИК без специальной обработки


При визуальном качественном АЭА строят дисперсионную кривую (рис.2.3.1) используемого прибора (стилоскопа, стилометра), т.е. градуировочный график прибора, выражающий зависимость между показаниями его отсчётного барабана и длиной волны линии в эталонном спектре n = f (l) (меди, железа и др.). Затем поочерёдно фиксируют все линии в спектре пробы анализируемого

Рис.2.3.1. Дисперсионная кривая прибора

Вещества в делениях шкалы отсчётного барабана. По графику зависимости n = f(l) устанавливают длины волн спектральных линий. После этого идентифицируют линии в спектре пробы с помощью специальных таблиц, в которых указана принадлежность всех возможных спектральных линий определённым элементам (с указанием их числа, цвета, длины волны, потенциала ионизации, ИВ), табл.2.3.3.

Считается, что элемент присутствует в пробе, если идентифицированы три или четыре его спектральных линии.


Таблица 3.

Элемент

Потенциал ионизации, эВ

Длина волны, нм

Характеристика линии

Аl (искровой разряд)

5.98

624.3.623.2.484.2.466.3 559.3

Оранжевая Оранжевая Синяя Ярко-синяя Желтая


При фотографическом варианте АЭА через специальную диафрагму над или под исследуемым спектром фотографируют эталонный спектр железа (рис.2.3.2).

Для определения длины волны lx неизвестной линии выбирают в спектре сравнения резкие линии с l1 и l2 так, чтобы анализируемая линия находилась между ними.

С помощью спектропроектора идентификацию проводят, совмещая эталонный спектр железа, на котором приведены последние линии других элементов, с исследуемым спектром и отмечают совпадения линий сравниваемых спектров. Отсутствие последней линии определяемого элемента в спектре гарантирует отсутствие других линий этого элемента. Однако наличие линии с l, характерной для последней линии какого-либо элемента, ещё не означает, что данная линия принадлежит именно этому элементу. Это может быть и следствием наложения спектральных линий. Поэтому окончательную идентификацию проводят, проверяя последние линии всех "подозреваемых" элементов.

Качественным АЭА определяют более 80 элементов с пределом обнаружения от 10-2% (Hg, Os и др.) до 10-5% (Na, B, Bi и др.). Низкий предел обнаружения может привести к переоткрытию элементов, попавших в пробу в результате случайных загрязнений.


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
ФБР арестовало 12 епископов во Франции и Италии по делу коррупции на выборах Папы Римского.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по химии "Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru