Реферат: Постулаты квантовой механики - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Постулаты квантовой механики

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 1671 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

3



Каждый из постулатов квантовой механики, конечно, можно сформулировать в виде лаконичного математического утверждения, но, как всякое исходное допущение, любой из них построен на целой совокупности понятий и образов, которые, в свою очередь, требуют подробного разъяснения.


2.1. Постулат 1. Волновая функция.


2.1.1. Всякое физическое состояние квантово-механической системы изображается волновой функцией . Ее аргументами являются все координаты всех частиц системы и время.

2.1.2. Совокупность всех пространственных переменных всех частиц называется конфигурационным пространством системы K. Так, для n частиц

Конфигурационное пространство имеет наглядный геометрический образ только для систем, содержащих не более одной частицы. В остальных случаях – это абстрактное понятие. Каждая переменная задана в пределах своей области определения, которая зависит от характера этой переменной. Очень часто используют не декартовы, а полярные, либо другие, координаты.

2.1.3. Математические свойства волновой функции определяются ее назначением. Являясь функцией состояния, она должна быть:

однозначна

неразрывна

конечна.

Этими свойствами обладают так называемые регулярные функции. Поясним графически смысл этих функций, для чего представим свойства, недопустимые для регулярной функции.

a< х < b

На этом интервале Функция разрывна Функция неограниченна

функция неоднозначна при х = а возрастает при х => а

Рис. 1. Функции, которые по своим свойствам не могут быть использованы в качестве волновых функций состояния квантово-механической системы.

2.1.4. Далее встанет проблема сопоставления физических параметров для состояний как одной системы, так и состояний разных систем. Для этот потребуется стандартизация волновых функций, а, следовательно, их численная калибровка. Это достигается введением условия нормировки волновой функции. Оно имеет истоки в векторной алгебре и в теории вероятностей.

Норма – это одно из названий длины вектора в алгебре. Нормированный вектор имеет единичную норму, то есть его скалярное произведение самого на себя равно единице:

или , (2)

где |а| - модуль вектора. Любой вектор произвольной длины b можно нормировать, умножая на нормировочный множитель

, (2.1)

в результате получим нормированный вектор а, отвечающий условию нормировки (2.1).

Волновая функция, рассматриваемая как абстрактный вектор состояния, должна быть нормирована, т.е. ее скалярное произведение самой на себя равно 1:

Эквивалентная запись условия нормировки имеет вид

(2.2)

2.1.5. Понятию волновой функции до сих пор мы не придавали конкретного физического содержания, принимая ее просто как абстрактный образ состояния. Физическое истолкование волновой функции предложил Макс Борн. Согласно Борну, величину следует рассматривать как вероятность пребывания системы, находящейся в состоянии , в элементе объема конфигурационного пространства , который охватывает точку этого пространства с координатами , т.е.

,

где

И в таком случае условие нормировки приобретает ясный вероятностный смысл, а именно, формула

(2.3)

оказывается просто условием достоверности существования системы в конфигурационном пространстве, если она находится в состоянии . Квадрат модуля волновой функции приобретает смысл плотности вероятности. Таким образом, волновые функции должны быть

однозначными

непрерывными

конечными

нормированными.

2.1.6. Из формулы нормировки (2.3) следует размерность волновой функции стационарной системы в рассматриваемой задаче, а именно:

,

где размерность объема конфигурационного пространства равна произведению размерностей всех пространственных переменных, образующих его:

2.1.7. Выше говорилось об ортогональных наборах собственных функций эрмитовых операторов. Накладывая на каждую из них условие нормировки, приходим к чрезвычайно удобным ортонормированным наборам функций, например:

,

где

Эти два качества можно объединить в одно условие:

(2.4)

где – символ Кронекера, который может принимать два значения:

при и при .

Читатель, вероятно, догадался, что в нашем распоряжении появился мощный аппарат, подобный векторному.


2.2. Постулат 2. Операторы динамических переменных


2.2.1. Возможные значения физически наблюдаемых величин являются собственными значениями операторных уравнений вида

Каждой динамической переменной ставится в соответствие свой линейный самосопряженный оператор.

2.2.2. Важнейшими динамическими характеристиками одной частицы являются:

- радиус-вектор , где координаты могут быть:

декартовыми или полярными ( - углы, а – длина вектора);

- вектор импульса и его координаты – проекции;

- вектор момента импульса , являющийся векторным произведением радиуса-вектора на импульс

(2.5)

и, соответственно, его проекции равны

(2.6)

(2.7)

(2.8

- кинетическая энергия Т, скалярная величина, которая в поступательном движении связана и с массой и импульсом

;

для одномерного вращения вокруг оси (например, z) справедлива подобная же формула, где масса заменена моментом инерции Iz, а импульс – его моментом :

- потенциальная энергия, т.е. скалярное силовое поле, задаваемое функци-ей координат , в котором движется частица;

- полная энергия Е, равная сумме кинетической и потенциальной энергий

2.2.3. С учетом общих требований, предъявляемых к операторам квинтовой механики, постулируются простейшие операторы, а именно: операторы координат, определяющие положение частицы, и импульса ее,

- оператор координаты совпадает с умножением на саму координату q, т.е.: , или угол,

или, в общем виде ;

- оператор импульса имеет дифференциальную форму

(2.9)

где постоянная Планка Дж·с, и операторы координат импульса соответственно равны:

, , (2.10)

Введение в оператор, мнимой единицы превращает его в самосопряженный т.е. отвечающий условию (1.5).

2.2.4. Остальные операторы строятся по формулам классической механики, где вместо координат и импульсов используются их операторы, Это утверждение можно считать следствием макроскопического устройства приборов по законам классической физики. Построим операторы и для одной частицы:

- операторы момента импульса и его проекций:

, (2.11)

, (2.12)


, (2.13)

(2.14)

В полярных координатах (например, сферических) соответствующие производные декартовых координат следует заменить их выражениями через полярные переменные;

- оператор кинетической энергии в декартовых координатах:

(2.15)

Переходя к полярным координатам, лапласиан преобразуют к ним. Для случая вращения по поверхности без радиальной компоненты движения, как это имеет место при вращении двухатомной молекулы вокруг центра масс, можно записать:

(2.16)

оператор потенциальной энергии, подобно координате, дается просто умножением на функцию потенциальной энергии, т.е.

, или (2.17)

оператор полной энергии называют гамильтонианом, в честь английского ученого Гамильтона, оставившего фундаментальные труды в механике, астрономии и математике, и обозначают его

(2.18)


2.3. Постулат 3. Уравнение Шрёдингера


2.3.1. Эволюция системы определяется, с одной стороны, ее мгновенным состоянием и, следовательно, волновой функцией. С другой стороны, изменение состояния во времени зависит от "скорости" эволюции, т.е. от производной волновой функции по времени. Вместе с тем такое изменение связано с каким-либо взаимодействием с окружающими систему объектами и, следовательно, с обменом энергией. Это означает, что при описании эволюции необходимо связать саму волновую функцию, ее производную по времени и гамильтониан, в общем случае зависящий от координат и времени.

2.3.2. Такая связь вводится в виде временн?го уравнения Шрёдингера, которое является одним из постулатов квантовой механики и записывается в форме:

(2.19)

Возможные функции состояния системы удовлетворяют уравнению (2.19)

2.3.3. В том случае, когда гамильтониан Н, а, следовательно, и энергия системы не зависят от времени, временное уравнение Шредингера легко преобразуется в стационарное уравнение Шредингера, имеющее структуру операторного уравнения (1.1).

Произведем соответствующие преобразования. Для этого положим, что гамильтониан не включает времени в явном виде и зависит только от координат

(2.20.)

Это позволяет нам использовать метод Фурье для разделения переменных и представить волновую функцию в виде двух сомножителей, одного покоординатного и другого временного:

(2.21)

Подставим результат в (2.20) и перенесем влево от , а влево от оператора дифференцирования по времени, так как по отношению к этим операторам выносимые множители условно постоянны и не преобразуются:

,

(2.22)

Теперь разделим переменные в уравнении (2.22)

(2.23)

С учетом независимости пространственных и временных переменных следует обе части полученного равенства (2.23) приравнять одной и той же постоянной величине, в результате получим систему из двух уравнений:

(2.24)

(2.25)

Легко видеть, что выражение (2.25) имеет вид операторного уравнения (1.1) и, следовательно, постоянная const есть собственное значение гамильтониана, то есть энергия системы:.

Временная часть волновой функции ?(t), получаемая как решение уравнения (2.24), имеет вид строго периодического процесса, совершающеюся с круговой частотой, а именно:

(2.26)

Как уже говорилось ранее, временная периодичность функций состояния является неотъемлемой чертой стационарного движения. Операция комплексного сопря­жения уравнения (2.19) означает замену t на -t, т.е. время как бы обраща­ется вспять. Временная часть волновой функции в (2.26) обратится в физически эквивалентную , но любая наблюдаемая величина останется той же самой согласно (1.5). Уравнение Шрёдингера описывает, таким образом, процессы, обратимые во времени.

2.3.5. Наконец, из уравнения (1.25) для стационарных систем получаем операторное выражение закона сохранения энергии:

(2.27)

Это выражение называется стационарным уравнением Шрёдингера. Оно не содержит времени в явном виде. Стационарное уравнение Шрёдингера является основным инструментом для решения теоретических задач об электронном строении атомно-молекулярных систем. В процессе точного или приближенного решения уравнения (2.27) находится вид волновой функции, а также энергия исследуемых состояний.

2.3.6. Всякая система характеризуется своим гамильтонианом, и он является тем исходным общим условием, которое управляет и характером движения, и предписывает возможный вид состояний и уровней системы


2.4. Постулат 4. Принцип суперпозиции состояний


2.4.1. Если возможными волновыми функциями являются и то возможно такое состояние системы, которому отвечает волновая функция

(2.28)

2.4.2. Этот постулат математически оформляет связь между чистыми и смешанными состояниями квантово-механической системы, о которых говорилось в разделе 1. Образ смешанного состояния, согласно сформулированному утверждению, оказывается суперпозицией – наложением волновых функций чистых состояний, Отсюда данный постулат называется принципом суперпозиций.

Если и принадлежат некоторому ортонормированному набору, т.е.

и ,

то формулу нормировки смешанного состояния (2.29) можно считать условием, определяющим вклады отдельных чистых состояний в смешанное:

(2.29)

Отсюда следует, что вероятность обнаружить систему в каком-либо из чистых состояний (1 или 2) в составе смешанного равна квадрату коэффициента ( или соответственно).


2.5. Постулат 5. Средние значения динамических переменных


2.5.1. Среднее значение динамической переменной , получаемое из множества измерений, равно математическому ожиданию этой величины:

(2.30)

Если волновая функция нормирована, то знаменатель единичен, и получаем более простое выражение;

(2.31)

2.5.2. Покажем, что у чистых состояний квантово-механической системы средние значения наблюдаемых переменных совпадают с собственными значениями соответствующих эрмитовых операторов. В этом случае формулы (2.30) и (2.31) непосредственно следуют из фундаментального операторного уравнения (1.1).

Чтобы показать это, запишем уравнение (1.1) с помощью символики Дирака, далее слева скалярно домножим каждую его часть на бра-вектор | и выделим в правой части равенства собственное число . В итоге приходим к формулам (2.30) и (2.31). Цепочка простейших преобразований имеет вид:

Для общего случая смешанных состояний подобного обоснования нет, и формулы (2.30) и (2.31) постулируются. Этот постулат приобретает уже универсальное содержание. С его помощью можно рассчитывать средние значения даже тех динамических переменных, операторы которых не обладают дискретными спектрами волновых функций и собственных значений, например, координаты и потенциальной энергии.


1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Криштиану Рональдо был госпитализирован с травмой причёски.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru