Курсовая: Производство этанола методом гидратации этилена - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Производство этанола методом гидратации этилена

Банк рефератов / Химия

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 8491 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной курсовой работы

Узнайте стоимость написания уникальной работы

45 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ УФИМСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЭКОНОМИКИ И СЕРВИСА Уфимский государственный институт сервиса Кафедра охраны окружающей среды и рационального использования природных ресурсов КУРСОВАЯ РАБОТА По дисциплине «Промышленная экология» На тему: Производство этанола методом гидратации этилена Выполнил студент группы ОД-41 Давыдов Д.В. Проверил профессор Исмагилов Ф.Р. Уфа 2006 СОДЕРЖАНИЕ ВВЕДЕНИЕ ..... .............................................................................................. 3 1. ЭКОЛОГИЗАЦИЯ ХИМИЧЕСКОЙ И НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ .. .......... 4 1.1. Теоретические аспекты экологизации и экологизация производства ..................................................................................................4 1.2 Очистка отходящих газов.......................................................................5 1.3. Очистка стоков нефтеперерабатывающей промышленности............6 1.4. Выбросы углеводородов ........................................................................7 2. ПОДГОТОВКА СЫРЬЯ ДЛЯ ПРОЦЕССА ГИДРАТАЦИИ ...... . .8 2 .1. Компримирование и осушка газа пиролиза ....................................... .8 2 .2. Фракционирование газа пиролиза ...................................................... 10 2 .3. Разделение пиролиза при высоком давлении ................................... .11 2 .4. Очистка этилена ................................................................................... 15 2 .5. Получение этилена диспропорционированием пропилена ............ .. 18 3. ОСНОВНЫЕ МЕТОДЫ ПОЛУЧЕНИЯ СПИРТОВ ..... .................20 4 . ПРОИЗВОДСТВО СПИ РТОВ СЕРНОКИСЛОТНОЙ ГИДРАТАЦИЕЙ ОЛЕФИНОВ .............. ............................. ...................21 4 .1. Теоретические сведения ......... ........................... .............................. .... 21 4 .2. Технология получения спиртов методом сернокислотной гидратации ...... ............................................................................................ .28 5 . ПРОИЗВОДСТВО СПИРТОВ ПРЯМОЙ ГИДРАТАЦИЕЙ ОЛЕФИНОВ ................... ............................................................................ 30 5 .1. Теоретические сведения ........... ........................................................... 30 5 . 2 . Технологические особенности процесса ........................................... 35 5 .3. Технологическая схема процесса .............. ........................................ .36 5 .4. Характеристика основной аппаратуры ........ ...................................... 40 5 .5. Расчёт материального баланса гидратора ................. ........................ . 41 6 . ПРЯМАЯ ГИДРАТАЦИЯ ЭТИЛЕНА НА НЕЙТРАЛЬНЫХ КАТАЛИЗАТОРАХ ......................... ......................................................... 46 ЗАКЛЮЧЕНИЕ .............. ........................................................................... 47 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ ................ ............. 48 ВВЕДЕНИЕ В данной курсовой работе исследован процесс получения этанола из этилена путём гидратации последнего. А также рассмотрено получение сырья ( этилен ) путём фракционирования из газа пиролиза. И последующая его очистка от сероводорода, двуокиси и окиси углерода, ацетилена и кислорода. Этанол принадлежит к числу многотоннажных и широко применяемых продуктов органического синтеза. Он является хорошим, хотя и огнеопасным растворителем; в больших количествах используется в пищевой и медицинской промышленности. Служит горючим в жидкостных ракетных двигателях, антифризом и т. д. Как промежуточный продукт органического синтеза этанол имеет важное значение для получения сложных эфиров: хлороформа, хлораля, диэтилового эфира, ацетальдегида и уксусной кислоты. В России процесс производства синтетического этанола посредством гидратации этилена осуществляется двумя способами: сернокислотной и прямой гидратацией. Первый способ внедрен в промышленном масштабе с 1952 г, второй получил широкое распространение в последние десятилетия. На сегодняшний день любой технологический процесс должен рассматриваться не только с точки зрения экономических показателей , но и должно обязательно учитываться влияние этого процесса на окружающую среду. Процесс получения этанола на всех этапах – от подготовки сырья до получения уже готового продукта – сопровождается использованием или образованием опасных для окружающей среды веществ . Таких как серная кислота, фосфорная кислота и др . Совершенно естественно, что выбор метода производства этанола должен учитывать вредное влияние продуктов производства на окружающую среду. Но в то же самое время любой технологический процесс должен быть и экономически целесообразным. Исследование вредного воздействия на окружающую среду с учётом экономической эффективности я и считаю целью данной курсовой работы. 1. ЭКОЛОГИЗАЦИЯ ХИМИЧЕСКОЙ И НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ 1.1 Теоретические аспекты экологизации и экологизация производства Основные направления инженерной защиты окружающей природной среды от загрязнения и других видов антропогенных воздействий – внедрение ресурсосберегающей, безотходной и малоотходной технологии, биотехнология, утилизация и детоксикация отходов и главное – зкологизация всего производства, при котором обеспечивалось бы включение всех видов взаимодействия с окружающей средой в естественные циклы круговорота веществ. Эти принципиальные направления основаны на цикличности материальных ресурсов и заимствованы у Природы, где, как известно, действуют замкнутые циклические процессы. Технологические процессы, в которых в полной мере учитываются взаимодействия с окружающей средой и приняты меры к предотвращению отрицательных последствий, называют экологизированнными. Подобно любой экологической системе, где вещество и энергия расходуются экономно и отходы одних организмов служат важным условием существования других, производственный экологизированный процесс, управляемый человеком, должен следовать биосферным законам, и в первую очередь закону круговорота веществ. Можно выделить следующие основные направления в осуществлении экологически чистых технологических процессов: 1) комплексное использование и глубокая переработка сырья. Производство должно быть как можно менее ресурсоемким, осуществляться с минимумом затрат сырья и реагентов на единицу продукции. Образующиеся полуфабрикаты должны передаваться в качестве сырья другим производствам и полностью перерабатываться; 2) оптимальное использование энергии и топлива. Производство должно осуществляться при минимальных затратах энергии и топлива на единицу продукции и, следовательно, тепловые загрязнения окружающей среды также минимальны; 3) создание принципиально новых малоотходных технологических процессов. Этого можно добиться совершенствованием катализаторов, техники и технологии производств; 4) создание и внедрение замкнутых систем водоиспользования, включающих (или сводящих к минимум) потребление свежей воды и сброс сточных вод в водоемы; 5) обеспечение высокой эксплуатационной надежности, герметичности и долговечности функционирования оборудования и всех производств. Разработка автоматизированных систем обеспечения экологической безопасности производств и комплексов; 6) обеспечение высокого качества целевых продуктов, используемых в народном хозяйстве. Экологически чистыми должны быть не только сами технологические процессы, но и выпускаемые в них товарные продукты. 1. 2 . Очистка отходящих газов При производстве этанола выделяются вредные вещества, которые могут загрязнять атмосферу. Такие как диэтилсульфат, этилсульфат, диэтиловый эфир, фосфорные эфиры и другие летучие вещества. Поэтому требуется очистка отходящих газов. Для защиты воздушного бассейна от негативного антропогенного воздействия в виде загрязнения его вредными веществами используют следующие меры: - экологизацию технологических процессов; - очистку газовых выбросов от вредных примесей; - рассеивание газовых выбросов в атмосфере; - устройство санитарно-защитных зон, архитектурно-планировочные решения и др. Наиболее радикальная мера охраны воздушного бассейна от загрязнения - экологизация технологических процессов и прежде всего создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ. Экологизация технологических процессов предусматривает создание непрерывных технологических процессов производства , замену местных котельных установок на централизованное тепло, предварительное очищение топлива и сырья от вредных примесей, замену угля и мазута на природный газ, применение гидрообеспылевания, перевод на электропривод компрессоров и др. всё шире применяют частичную рециркуляцию , то есть повторное использование отходящих газов. К сожалению, нынешний уровень развития экологизации технологических процессов, внедрение замкнутых технологий и т. д. недостаточен для полного предотвращения выбросов токсичных веществ в атмосферу. Поэтому на предприятиях повсеместно используются различные методы очистки отходящих газов . Способы очистки выбросов от токсичных газо- и парообразных примесей подразделяют на три группы: 1) поглощение примесей путём применения каталитическ4ого превращения; 2)промывка выбросов растворителями примеси (абсорбционный метод) и 3)поглащение газообразных примесей твёрдыми телами (адсорбционный метод). С помощью каталитического метода токсичные компоненты промышленных выбросов превращают в вещества безвредные или менее вредные путём введения катализаторов. Широко применют палладийсодержащие и ванадийсодержащие катализаторы. Одна из разновидностей этого метода это дожигание вредных примесей с помощью газовых горелок, широко используется на нефтеперерабатывающих заводах. Абсорбционный метод основан на поглощении вредных веществ абсорбентом (вода, растворы щелочей или соды, аммиака и др.) устройства – абсорберы. Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов – твёрдые тела с ультрамикропористой структурой (активированный уголь и глинозём, силикагель, цеолиты, сланцевая зола и др. ). 1. 3 . Очистка стоков нефтеперерабатывающей промышленности При производстве этанола образуются стоки фосфорной и серной кислоты. Для очистки используют нейтрализацию.для нейтрализации кислот в сточные воды вводят специальные реагенты (известь, кальцинированную соду, аммиак, раствор едкого натрия). При этом происходит реакция: Н 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O H 3 PO 4 + 3 NaOH = Na 3 PO 4 + 3 H 2 O 1. 4 . Выбросы углеводородов Источником загрязнений атмосферы углеводородами является реактор установки каталитического крекинга. Так как смесь газообразных углеводородов является продуктом процесса, то потеря его в атмосферу является ни сколько экологической проблемой для завода НПЗ, сколько экономической. Свойственный деструктивным процессам режим высоких температур и в ряде случаев высокого давления способствует потерям углеводородов и сопутствующего им сероводорода в атмосферу. При этом потери будут в несколько раз больше, чем при низкотемпературных процессах. Степень загрязнения атмосферы углеводородами зависит также от системы охлаждения нефтепродуктов, получаемых на установках каталитического крекинга, и от стабилизации бензиновых фракций. Естественно, что потери от испарения будут тем меньше, чем ниже температура охлаждения продукта, особенно лёгкого бензина. Аналогично будет влиять полнота стабилизации бензина, поскольку газ, растворённый в бензине, повышает парциальное давление углеводородных паров. Поэтому для предотвращения потери продукта, газы идущие из реактора охлаждают и сконденсировавшиеся жидкие продукты направляют на колонну стабилизации. Углеводороды, которые идут из регенератора установки не требуют дополнительной отчистки, так как их имеется незначительное количество, и они окисляются до CO 2 и H 2 O в дожигателе CO . [1] 2. ПОДГОТОВКА СЫРЬЯ ДЛЯ ПРОЦЕССА ГИДРАТАЦИИ 2.1.Компримирование и осушка газа пиролиза Этилен выделяют из газа пиролиза при низких температурах и высоких давлениях. Перед фракционированием газ компримируют до давления 34 – 45 кгс/см 2 . Компримирование производится во избежание перегрева газа при фракционировании, что привело бы к полимеризации диенов и высших олефинов. Осушка необходима потому, что газообразные углеводороды при низких температурах и высоком давлении образуют с водой гидраты – кристаллические комплексы типа СН 4 . 6Н 2 О, С 2 Н 6 . 7Н 2 О и так далее. Кристаллогидраты затрудняют транспортирование газа, а при фракционировании, выделении гидратов и льда может вызывать забивание аппаратуры и нарушение нормальной работы газофракционирующей установки. Компримирование газа пиролиза производится в трёх -, четырёх- или пятиступенчатых компрессорах с промежуточным охлаждением и сепарацией газа между ступенями. Для этой цели могут применяться поршневые компрессоры или турбокомпрессоры (последние более экономичные и надёжные). Очень важно обеспечить эффективное межступенчатое охлаждение газа до низких температур. Для этого применяют поверхностное охлаждение. Показана также возможность проводить охлаждение газа прямым контактом его хладоагентом. Как известно, температура газа после сжатия зависит от степени сжатия и, следовательно, она тем ниже, чем больше число ступеней сжатия. При четырёхступенчатом сжатии до 45 кгс/см 2 температуры газа на выходе из компрессора не выше 100°C. В межступенчатых холодильниках конденсируется вода и тяжёлые углеводороды, которые должны быть тщательно отделены от газа. Содержание водяных паров в газе (кг/кг) зависит от температуры и давления: ; где Z – количество влаги, кг/час; G – количество газа, кг/час; Р – давление паров воды при температуре газа, кгс/см 2 ; р – давление в системе, кгс/см 2 ; М – средний молекулярный вес газа. При повышении давления и понижении температуры часть водяных паров конденсируется, что и происходит при компрессии с последующим охлаждением. Поэтому осушку газа проводят после компрессии, чтобы на осушку поступал газ с наименьшим содержанием влаги. Для надёжной работы газофракционирующих установок точка росы газа пиролиза не должна превышать -65°C, что отвечает содержанию в нём воды при 43 кгс/см 2 менее 30 мг/кг. Для осушки газа могут применяться жидкие реагенты (ди- или триэтиленгликоли) и твёрдые адсорбенты, однако для осушки жидкими реагентами требуется более сложная аппаратура и она менее эффективна, чем адсорбционная. В качестве адсорбентов применяют твёрдые материалы с развитой поверхностью – силикагель, алюмогель, природные алюмосиликаты и синтетические цеолиты (алюмосиликаты натрия и кальция с регулируемым размером пор, так называемы молекулярные сита). Молекулярные сита селективно адсорбируют молекулы определённого размера; их поглотительная способность в 3 – 4 раза выше, чем у алюмогелей и силикагелей, благодаря чему значительно уменьшаются размеры осушителя. Таким образом применение молекулярных сит позволяет снизить влажность газа на целый порядок по сравнению с алюмогелем и силикагелем; в результате точка росы газа может быть снижена до -73°C. Перед осушкой газ освобождают от тяжёлых углеводородов для чего его после компримирования, охлаждения и сепарации подвергают ректификации. Отделение тяжёлых углеводородов необходимо во избежание забивания пор адсорбента и его дезактивации, а также потому, что на разделение очень важно подавать газ, свободный от тяжёлых фракций. Перед осушкой газ должен быть охлаждён, так как с понижением температуры увеличивает влагоёмкость адсорбента. Осушка газа проводится в периодически работающих колоннах; циклы работы колонн 24 – 48 ч. Газ из цеха пиролиза забирается компрессором 1 и проходит последовательно все ступени компрессии. После каждой ступени газ охлаждается в межступенчатых холодильниках 3, 4 и 7 и отделяется от конденсата в межступенчатых сепараторах 2, 5, 6. После четвёртой ступени компремированый газ охлаждается в холодильнике 8 до 15 °C, отделяется от конденсата в сепараторе 11 и направляется в колонну 13 для выделения тяжёлых углеводородов (С 4 и выше). Конденсат из сепаратора 1 направляется в ёмкость 12, куда поступают также конденсаты из многоступенчатых сепараторов. Колонна 13 снабжена кипятильником 14, обогреваемым водяным паром, и орошается жидкой пропан-пропиленовой фракцией. Температура вверху колонны 0 °C, внизу 85 – 90 °C, давление 45 кгс/см 2 . Для предотвращения полимеризации в колонну вводится ингибитор. Газ, отбираемый с верха колонны, направляется на осушку. В кубовой жидкости колонны 13 остаётся значительное количество лёгких углеводородов, в том числе этилен и пропилен. Для их выделения кубовая жидкость направляется в колонну 15 орошаемую конденсатом из ёмкости 12. Колонна снабжена кипятильником. Температура вверху колонны 32 °C, внизу 125 °C. Верхний продукт конденсируется в охлаждаемом водой конденсаторе 16, отделяется от газа в сепараторе 17, и конденсат в виде флегмы возвращается на орошение. Газ из ёмкости 12 присоединяется к сырью на третьей ступени компрессии. Кубовая жидкость (С 4 и выше) охлаждается в холодильнике 19 и выводится из системы. Осушка газа из колонны 13 осуществляется последовательно в трёх осушителях 21, 22, 23, заполненных адсорбентом. Поочерёдно в двух из них происходит осушка газа, а в третьем – регенерация адсорбента. Регенерация заключается в продувке адсорбента инертным газом – в данном случае метано-водородной фракцией, нагретой до 240 °C. Через каждые 24 часа работы первый по ходу газа осушитель отключается для регенерации, второй становится первым, а осушитель со свежерегенерированным адсорбентом становится вторым по ходу газа. Приведённая схема является одним из возможных вариантов компримирования газа пиролиза и отделения тяжёлых фракций. Иногда тяжёлые фракции отделяют перед последней ступенью компрессии. Существует также схемы, предусматривающие выделение тяжёлых фракций, как перед осушкой газа, так и перед газоразделением, с отделением части пропан-пропиленовой фракции на последней ступени компримирования. 2.2. Фракционирование газа пиролиза Для разделения газа пиролиза применяют следующие методы. 1. конденсационно-ректификационный метод (низкотемпературная ректификация), когда разделение газовой смеси – деметанизация, выделение и разделение этан-этиленовой фракции – достигается конденсацией с последующей ректификацией под давлением с применением аммиачного, метанового, этиленового (или пропанового) холодильных циклов. 2. абсорбционно-ректификационный метод, при котором все компоненты тяжелее метана извлекают из газа абсорбцией при низких температурах и затем выделяют низкотемпературной ректификацией. Оба метода требуют затрат холода и применения специальных хладогентов, поскольку критическая температура этилена равна +9,7 °C и ожижение его водой невозможно. Необходимо отметить, что при конденсационно-ректификационном методе основные затраты приходятся на создание низких температур. В связи с этим большое значение имеет эффективность и экономичность применяемых холодильных циклов. Разделение газа пиролиза может осуществляться при низком или при высоком давлении. При разделении при низком давлении (температура ниже -120 °C, давление 1,3 – 2 кгс/см 2 ) расширяется интервал температур кипения разделяемых углеводородов и увеличивается их относительная летучесть. Кривая равновесия фаз становится круче, вследствие чего для разделения требуется меньше тарелок, флегмовое число снижается, а чёткость разделения может быть очень высокой. С повышением давления кривая равновесия фаз становится более пологой – увеличивается число тарелок и флегмовое число. Однако для создания низких температур, требуемых для разделения при низком давлении, приходится применять наряду с аммиачным и пропановым также метановый холодильный цикл. Это требует более сложного оборудования и менее экономично, чем этиленовый холодильный цикл, применяемый при высоких давлениях. Вместе с тем, хотя на установках газоразделения при низком давлении получается очень чистый этилен, они малопроизводительны и очень чувствительны к изменению состава газа. Кроме того, их значительно труднее автоматизировать, чем установки высокого давления. 2.3.Разделение пиролиза при высоком давлении При высоком давлении разделение может производиться абсорбционно-ректификационным или конденсационно-ректификационным методами. При использовании конденсационно-ректификационного метода метано-водородная фракция выделяется при температурах от -90 до -100°C, при абсорбционно-ректификационном методе – от -20 до -30°C с использованием лёгкого абсорбента типа фракции С 4 . Принципиальная схема разделения газа пиролиза при высоком давлении приведена на рисунке 2: Компримированный, осушенный и охлаждённый газ поступает в метановую колонну 1, где из него выделяются газообразные метан и водород, которые отводятся сверху колонны. Углеводороды С2 – С4 конденсируются в колонне 1 и направляются в этан-этиленовую колонну 2. С верха этой колонны отбирается этан-этиленовая фракция направляемая в этиленовую колонну 3, где этилен и этан разделяется: сверху отбирается концентрированный этилен, а снизу этан. Остаток из колонны 2 представляющий собой смесь из углеводородов С3 – С4, направляется в пропан-пропиленовую колонну 4. сверху из этой колонны отбирается пропан пропиленовая фракция, а снизу бутан-бутеновая. При разделении газа пиролиза при высоком давлении конденсационно-ректификационный и абсорбционно-ректификационный методы различаются в основном лишь схемой и режимами работы метановой колонны. Схема работы метановой колонны при конденсационно-ректификационном методе изображена на рисунке 3: Газ пиролиза в холодильнике 1 охлаждается до минус 55 – 60 градусов Цельсия с использованием аммиачного или пропанового холодильного цикла и поступает в ректификационную колонну 2. Из верхней части колонны 2 (температура вверху минус 95 – 100 градусов Цельсия) отбираются пары метано-водородной фракции, проходящий через охлаждаемый этиленом конденсатор 3, в котором конденсируется часть метана, требуемая для орошения колонны. Конденсат отделяется от паров в газосепараторе 4 и насосом 5 подаётся на орошение колонны 2. Нижняя часть колонны 2 обогревается пропаном с помощью кипятильника 6 (температура внизу колонны 15 – 18 градусов Цельсия). Снизу из колонны выводится смесь углеводородов (С2 и выше), направляемая на дальнейшую ректификацию. При абсорбционно-ректификационном методе метановая колонна (рис.15): Представляет собой фракционирующий абсорбер (верх колонны работает как абсорбер, а низ – как отпарная колонна). Газ пиролиза перед поступлением в колонну 4 охлаждается в холодильнике 1 до -25°С. Извлечение компонентов тяжелее метана осуществляется путём орашения колонны 4 лёгким абсорбентом (фракция С4 из пропановой колонны), также охлаждённым до -25°С. Расход абсорбента достигает 1,35 кг на кг газа. Необходимость работать с лёгким абсорбентом обусловлена тем, что степень извлечения (абсорбционный фактор) пропорционален числу молей абсорбента: ; где A – абсорбционный фактор; K – константа фазового равновесия извлекаемого компонента; L , G – количество абсорбента и газа, кмоль. Следовательно, при той же массе абсорбента степень извлечения будет больше для абсорбента с более низким молекулярным весом. Кроме того, для десорбции более лёгкого абсорбента требуются меньшая затрата тепла вследствие более низкой температуры низа десорбера. Недостатком применения лёгких абсорбентов является частичный их унос с отходящими газами, в данном случае с метано-водородными фракциями. Для отвода тепла, выделяющегося при абсорбции, верхняя часть колонны 4 оборудована промежуточными выносными холодильниками 2. уходящая сверху метано-водородная фракция содержит некоторое количество паров абсорбента, зависящее от температуры и давления на верхней тарелке. Для извлечения унесённого абсорбента метано-водородная фракция охлаждается в холодильнике 8 до -60 °С и поступает в ёмкость 9, где газ отделяется от конденсата. Обогрев низа колонны осуществляется через кипятильник 5. однако, поскольку остаток содержит значительное количество абсорбента (фракция С4), температура низа колонны должна быть выше, чем в отсутствии абсорбента, и составляет около 60°C. Соответственно обогрев кипятильника осуществляется водяным паром. Схемы работы колонн 3 и 4 (рисунок 20) такие же, как при конденсационно-ректификационном методе. В режиме этан-этиленовой колонны 2 имеются различия обусловлены большим содержанием абсорбента фракции С4 в остатке. Температура низа этан-этиленовой колонны при работе по конденсационно-ректификационному методу должна быть около 70 °C, в то время как при абсорбционно-ректификационном методе она повышается до 110°C. Соответственно для обогоева кипятильников требуется в первом случае пар низкого, а во втором – высокого давления, при чём расход водяного пара для абсорбционно-ректификационной схемы значительно больше, так как абсорбент циркулирует через все колонны (за исключением этиленовой). Больше также расход воды на охлаждение пропан-пропиленовой колонны. Чистота этилена также получается различной при работе по разным схемам. При одинаковой чёткости разделения в отгонной части метановой колонны абсолютное содержание метана в остатке при работе по схеме с абсорбции будет больше, вследствие того, что количество остатка (фракция С2 – С4 и абсорбент) примерно в три раза больше. Поэтому содержание метана в этилене, полученном абсорбционно-ректификационным методом больше, чем при работе по схеме с конденсацией. Резюмируя, отметим преимущества и недостатки каждого метода. Преимуществами конденсационно-ректификационного метода является меньший расход водяного пара и воды и большая чистота этилена, недостатками – сложность компрессорного оборудования, более низкие температуры и высокие требования к стабильности состава газа. К достоинствам абсорбционно-ректификационного метода относятся умеренно низкие температуры и сравнительная простота эксплуатации; к недостаткам – повышенные энергетические затраты, унос абсорбента и необходимость его выделение при пониженных температурах. По суммарным технико-экономическим показателям предпочтение следует отдать конденсационно-ректификационному методу. Технико-экономические показатели процесса низкотемпературного разделения газа пиролиза определяются, в первую очередь, энергетическими затратами на создание низких температур, а эти затраты в значительной мере зависят от выбранной схемы охлаждения. Охлаждения до низких температур, необходимое для выделения из газа пиролиза, достигается сочетанием методов дросселирования, расширения газа в детандере и каскадного охлаждения за счёт теплообмена с испаряющимся вышекипящим компонентом (например, охлаждение этилена пропаном, метана – этиленом). 2.4. Очистка этилена Очистка этилена сводится к удалению из него сероводорода, двуокиси и окиси углерода, ацетилена и кислорода. Удаление этих примесей может осуществляться на различных стадиях процесса производства этилена. Сероводород, двуокись углерода и органические сернистые загрязнения удаляют путём промывки газо-водной щёлочью (обычно 10% раствором едкого натра) в специальном скруббере. При этом протекают реакции: H 2 S + 2NaOH
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
И помни - никакой агрессии! Бей и улыбайся.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по химии "Производство этанола методом гидратации этилена", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru