Диплом: К решению нелинейных вариационных задач - текст диплома. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Диплом

К решению нелинейных вариационных задач

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Дипломная работа
Язык диплома: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 3578 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной дипломной работы

Узнайте стоимость написания уникальной работы

Казанский государственный педагогический университет. Дипломная работа «К решению нелинейных вариационных задач». выполнил студент 151 группы математического факультета Салахутдинов М.Ш. Научные руководители: КФМН, доцент Сайфуллин Э. Г. Ст. Преподаватель Хисматуллина Н.Г. Казань -1999. ВВЕДЕНИЕ Дипломная работа в целом посвящена методам решения экстремаль ных задач. Причем более подробно изложены те классы экстремальных за дач, которые не изучаются ни в школьном курсе, ни в педвузовском курсе математики. Однако основная идея их решения лежит на основе построе ния математических моделей экономических задач и их решения. В первой части дипломной работы рассмотрены простейшие задачи на отыскание наибольшего и наименьшего значения, которые решаются элементарным способом - на основе известных неравенств: среднее ариф метическое не меньше среднего геометрического. В случае равенства сум ма принимает минимальное значение, а произведение достигает макси мального. Рассмотрены экстремальные значения квадратного трехчлена, а также решение экстремальных задач с применением производной. Далее рассматриваются основные понятия о задачах математическо го программирования: транспортная задача линейного программирования; задача о рационе; задача об оптимальном использовании сырья; рассмот рены задачи нелинейного программирования (случай нелинейной целевой функции; случай нелинейной целевой функции и нелинейной системы ограничений). Во второй части приводятся основные понятия о краевых задачах, примеры аналитического решения краевых задач, приближенный метод решения. Приводится сходящийся алгоритм для линейных краевых задач. На основе этого алгоритма при помощи ЭВМ решены цикл различных краевых задач; численные результаты приведены в приложениях. Третья часть посвящена'одномерным вариационным задачам и мето дам их решения. Преимущество данной работы в методическом плане заключается в том, что вариационная задача, в частном случае, может быть сведена к обычной задаче на отыскание экстремума функции одной переменной, а поэтому позволяет ввести понятие вариационной задачи уже в школьном курсе в классах с углубленным изучением- математики, как новый класс экстремальных задач. Далее в работе приводится вывод уравнений Эйлера-Лагранжа. На их основе рассмотрены примеры аналитического решения вариационной за дачи. Получен алгоритм решения линейных вариационных задач на основе метода конечных разностей, которая не решается аналитическими приема ми. На основе этого алгоритма на ЭВМ решены ряд задач, численные ре зультаты приведены в приложениях. Другой метод решения вариационных задач - метод Ритца вводится на простейших примерах, а затем обобщается. Так как оценка точности ме тода Ритца не является тривиальной задачей, то сравнительный анализ численных результатов весьма актуален. Решение рассмотренных задач методом Ритца и другими приемами, сравнительный анализ результатов показывает хорошую достоверность этого метода уже в первом приближении. В заключении приводится одна новая модификация метода Ритца, при помощи которой вариационная задача сводится к достаточно простой задаче отыскания экстремума функции одной переменной. При этом про цедура нахождения корня нелинейного уравнения выполнима лишь при ближенными методами. Сравнительный анализ численных результатов по казывает надежность метода. Основная ценность этой модификации в ре шении существенно нелинейных задач. В конце третьей части этой работы приводится идея обобщения рас смотренных задач на двумерный случай и методом Ритца решается дву мерная задача. I. ОБ ЭКСТРЕМАЛЬНЫХ ЗАДАЧАХ 1.1. Определение экстремума элементарным способом Во многих учебных пособиях для 7-х и 8-х классов встречаются не равенства, связывающие среднее арифметическое и геометрическое: ^ ^ С-г I где среднее арифметическое больше или равно среднего геометриче ского, что очевидно: °^-^^Г-=? а^г 2.1/ЙГ»;> ( &')^( Г)^ г^\1аГ^ fS - fT )\0 Причем равенство возможно только при ft =6. При помощи этого нера венства решаются задачи на экстремум: 1) Положительное числоД представить в виде суммы положительных слагаемых х и^-^так, чтобы их произведение х-(/^-х) было наибольшим. Решение: Найти х?о (/Ьх^при гл-сх-х Е Х (А-У)'3 __ о Пусть о-=Х и &= /4-х. Знаем, что ^^ clx ( a -5 J - w - axV ' aS = а — — При 0-^0 т.е. ?< = А-У — Х= ^/^ 2) Найти прямоугольник, имеющий данный периметр Р и наиболь шую площадь. Пусть о. и ^ - стороны прямбугольника, тогда .?= 2-( o - t - e ) . Площадь ^а-с' принимает максимальное значение как произведение двух положительных чисел при (Х-^о. Тогда J ?=\ - 0) ~ t - L < П- 2. Среднее геометрическое: jl ^ -• ^ Q .^- CLa .- ,„ ' Л^. (2) 3. Среднее гармоническое: ^ = ^ ^^..^ Уси (3) 4. Среднее квадратичное: /Ц -: \ О-^-ь О-а- + ^• • -^ ^ (4) ^ v п- Наша задача состоит из двух частей: а) доказать, что числа А/г, Л. ^/ -^ -действительно средние величины для СЬ, О-а., - • -, 0^- , б) установить неравенства между ними. В выражении (1) заменить все йс ( L r / / ^ • -, п -) самым наи меньшим из них Л< ; получим М^ ^ Д< . В выражении (1) заменим все СШ наибольшим из них OLr ^ ; получим -/У/ l ^ Cin . . Итак: Аналогично доказываем неравенства: а/ ^Н^ ^ (^ , а,^ ^ ^ а^ , а< ^ У^ ^ ^ . Справедливы следующие неравенства: ^ ^ ^-^. ^-л^ ^ ^УЧ^ - ^а/-с^- ... • а^ '^ q ^^^-^ q ^ ^ - п- и причем неравенство возможно только при ( Xt • = 0- f . ^ ... ^ CU ^. В случае ^-^2 - 07~а! ^ ^ ^ g2 - . Мы уже это доказали, с общим доказательством можно ознакомиться по книге. Там же приводится доказательство Я^ ^УЧ.2 , -Л^ ^-^ 1.Если г\ = Ct - f ^-Ол-^-.. .+• ftn . , то максимальное значение О^-О.г,--^ достигается при ol < ^ CLa . s .. ^ ^. = ^ /^ , ^(a,.cu-..-^)-^-^-...-^A-W. 2. Если Р= ^< • ds . ' • .. ' Л^ , то минимальное значение ( а ^ < ^^-" ^^'-у достигается при CUf Ол^'-- =" <2и. '= ^ УР , r^^ fo/+C?^+,„^Q^^ /Z-'lfP 1 . Рассмотрим частную, но практически важную задачу. Задача 1 Найти прямоугольный параллелепипед с данным объемом \/~, чтобы сумма его изменений была наименьшей. Дано: а-гО^-й^^ У _ ^ .найти min . ( Qfi - Qii - Cts ) При СИ = 0^ - 0-5 = v ^ rvuLn , ^С?/-ка,1+-^).=3' v \Г , т.е. ребра куба равны v Г . Более подробное изложение приложений неравенств к элементарно му определению экстремумов более подробно изложено в книгах . 1.3. Об экстремальных значениях квадратного трехчлена Квадратный трехчлен ^-=-а-х. +6- Jc .- f - c , а. ^ о , представим в виде: -У ^ а ( х- f - &/2а. ) 2 - f - ( с - ё г /^^) Возможно 2 случая: О- -70 и ol ^- o . 1. О. 70 , ^гъ У^ С - ао. ^и. ^^~°/2о. 2 clz . o , л^ах ^=- С- ^ y ^ ci , г^/усс ж ^ - % cl Примеры: / 9 , 1) ^^• г - 6'зс -^/^^ te -з;^^ / ^• ^ ^=^ ^с де^. 2) У---^^ S ^-У^-2(^--%) : LS / /^^ CL )( У-^/Р п^с ^-Х Рассмотрим частную задачу, которая играет ключевое значение в теории оптимизации. Задача 2. Даны числа Ci ^, Ci ^, ..., Ctn . . Найти число У такое, чтобы сумма / v 2 / ,0 / ,2 ^п.^ (х-а^)-(-(у-а^)-^,., ч-(^~с^) имела наименьшее значение. S^ ^• K 2 -2• (Q^t-CL^-^<^)'X^(O ц i 1-Q.^,„^ll^ )^ . ^. ( х- ^^-^) \А, ^ 'А-^^)^^^-^ rv ^ rv ^^А ^сс эс= ((^+(^ f -,„^ a ^)/ h . . Здесь мы рассматривали лишь простейшие примеры решения задач, с бо лее сложными задачами можно ознакомиться по литературе. 10 1.4. К решению экстремальных задач с применением производной Введение изучения производной в школьный курс открыло возмож ности более глубокого изучения вопросов физики, рассмотрению приклад ных задач. И задачи на экстремум функции начали рассматриваться с об щей точки зрения. Например, нахождение экстремума трехчлена = а х 2 -/- ё х + с = T ' fxJ рассматривается при помощи производной: ^= 2. dsei - e ^0 ^ r &- - S /2а- критическая точка, при этом если у4. (^+^)^-2 oi Ј> o ^ ^ (е-(-^) = 2ае^о, п^> г^с^ У- У (- ^/2о.)^ иначе г^гъ У=^(~ wq ,) . В пункте 28 [1] хорошо изложены правила нахождения максимальных и минимальных значений функций. Однако при решении некоторых задач применение элементарных способов более эффективно, чем применение производной. Например, за дача № 367 решается очень просто элементарным способом: Данное положительное число разложить на два слагаемых так, чтобы произведение было наибольшим. Решение: Пусть U - данное число, а X - одно из слагаемых. Из усло вия ^а^ L X ^-^ J только при Y = О-- Х .находим Х= °-/ S .Об общение этой задачи, решаемое в вузовских курсах при помощи экстрему ма многих переменных следующее. Задача 3. Положительно^число OL требуется разбить на П. неотри цательных слагаемых так, чтобы и произведение было наибольшим. Если <Х данное число, то ft слагаемые будут Я?у, ,„, Д?п-/ ; Ci -( Хг^-,„ч- ^. i ). При этом произведение Лу- S ? s . • ,.,' Хц^' L О. -(х/ ч- ,„ ^ ЗСл.^ ) 3 достигает максимума при Эрг ^ Хл = ,„ = X ^. f ^ CL ~ 'У-f -+,., -<• Хп - / ) . Отсюда у,-= Ci - fn -() Vf ц ^= ^/п ,т.е. все слагаемые равны ^/г. . А решение этой задачи при помощи экстремума функций нескольких переменных весьма затруднительно. 15 1.6. Экстремальные задачи в неполной средней школе В курсе математики V - VI классов учащимся нередко приходится решать задачи, в которых допускается несколько или даже много решений, причем далеко не всегда равнозначных. В таких случаях можно ставить дополнительный вопрос: найти наиболее выгодное решение, т.е. решать экстремальные задачи. С такими задачами приходится сталкиваться при изучении следующих разделов: "Неравенства", "Площадь и периметр пря моугольника", "Натуральные числа", "делимость натуральных чисел". Поскольку ученики V - VI классов встречаются с двойным неравен ством, то в этих классах методом оценки можно решать задачи на нахо ждение наибольшего и наименьшего значения линейного выражения a . y - h ^ где /ч^эе^/г (лги/?.- целые неотрицательные числа, ^г- /• п- ). • -'' ' ^ Задача: Стоимость телеграммы вычисляется почтовыми работни ками по следующему правилу: по 5 копеек за каждое слово и еще 20 копеек за отправку. Какая может быть наибольшая и наименьшая цена телеграммы, если количество слов в теле грамме определяется решением неравенства: /^ х- ^ ^0 ? Решение: решение сводится к нахождению наибольшего и наимень шего значения выражения S ' x -^-20 , если //^ а? ^^ , л G /М Сначала можно предложить вычислить значение выражения при несколь ких значениях переменной, взятых из промежутка ^ ^ х ^ ^ . Замеча ем, что сумма будет наибольшая, если слагаемое -Ух будет наибольшим, т.е. будет равно 5*40и наименьшим, если слагаемое .^ будет наимень шим, т.е. будет равно 5*17. Среди экстремальных задач геометрические задачи на вычисление площадей и периметров представляют очень большой интерес. Решение этих задач в V-VI классах методом оценки формирует первое представле ние о максимальном произведении при постоянной сумме двух перемен ных и о минимальной сумме при постоянном произведении. Задача. Начертите прямоугольник, периметр которого 36 см, и вычислите его площадь. Решение: оформим в виде таблицы: 16 периметр (см) 36 36 36 36 36 36 36 36 36 длина (см) 17 16 15 14 13 12 11 10 9 ширина (см) 1 2 3 4 5 6 7 8 9 площадь (см ) 17 32 45 56 65 72 77 80 81 Вывод: SHaH 6.=81 cM при й.=6=.9см Построение прямоугольников и запись решения в виде таблицы по могает лучше видеть, как изменяется площадь прямоугольника с постоян ной площадью. Остановимся на решении экстремальных задач в разделе "Натуральные числа". Здесь на первом этапе решаются самые простые за дачи, где число рассматриваемых элементов невелико. Это во многом упрощает организацию работы, требует меньше времени и создает хоро шую возможность детям увидеть особенности применения метода перебо ра к решению задач. Задача. С помощью цифр 5,2 и 7 напишите все трехзначные числа, в каждом из которых все цифры различны. Среди этих чисел найдите наибольшее и наименьшее число Решение: Это есть числа 527, 572, 275, 257, 752, 725. Наибольшее из них - 752, наименьшее - 257. На первый взгляд кажется, что это очень простая задача, но она несет большую теоретическую нагрузку. В жизненных и производственных си туациях часто приходится встречаться с задачами, которые допускают много различных решений. Решение экстремальных задач в курсе алгебры проходит в два этапа. На первом этапе рассматривается неопределенная задача, текст кото рой переводится на математический язык в виде неопределенного уравне ния (функции), которое допускает много или бесконечно много решений. На втором этапе по тем или иным признакам, которые заданы в яв ном или неявном виде, определяется, какое из решений задачи наиболее выгодно. 1. Ознакомимся с решением экстремальных задач по теме "Линейная функция". Решение этих задач сводится к нахождению экстремума линей ной функции ^= к-х, • +• о , где ^ и о - постоянные. Если эту функцию рассматривать на сегменте L ^) J 3>.3 , то она будет иметь на нем наимень шее и наибольшее значения. При ^>о наименьшее значение у принимает 17 в точке л;= t / , а наибольшее - в точке л'=/; при H ^ o функция У в точке Je -=<^ принимает наибольшее значение, а в точке л'=^ - наименьшее. Задача. Расстояние между двумя шахтами А и б по шоссейной дороге 60 км. На шахте А добывается 200т руды в сутки, на шахте В - 100т в сутки. Где нужно построить завод по переработке руды, чтобы для ее перевозки количество тонно-километров было наи меньшим? Решение: Выясним, что суммарное количество тонно-километров изменяется в зависимости от места нахождения завода, вычислив его, например, для случаев, когда завод находится от пункта А на расстоянии 30 км, 20 км, 10 км. Далее приступаем к решению за дачи, обозначив расстояние от завода С до шахты А через х: А С ^ ж ; 6С= 60-х- Количество тонно-километров, пройденных транспортом от А до С за каждый день, составляет 200 ткм, а от В до С - 100*(60- JC ) ткм. Суммарное количество (ткм) выразится функцией f ^^ pOx .-^ 0Ј>( ео-зе.)-^ ^оОх. т- ёооо, д которая определена на сегменте L . О , 60.1. ysssas - SL ...^- ,,-..^<=--„— --„.™ — — -, Ясно, что это уравнение может иметь А ( - ьи— ^ в бесконечно много решении. Исследуя функцию У= - foOx + 6000 на сегменте Г о • j bo ] , получим: ^ г ^ п , "s Gooo . Эта линейная функция будет иметь минимальное значение при ^ ^0, !/^„ = 6 cw ? TKM . Завод надо строить возле шахты А. 2. Решение задач по теме "Квадратичная функция" сводится к иссле дованию квадратного трехчлена, поэтому при их решении используются приемы выделения квадрата двучлена или свойствами квадратичной функции. Задача. Предлагается сделать ограду для квадратного участка земли со стороной 20м или прямоугольного участка земли , основании которого на несколько метров больше, а высота на столько же метров меньше. Сравните площади, периметры квадрата и пря моугольника. Решение: Поскольку сторона квадрата 20м, то Р =80м, s 5 =400м 2 Если бы одну сторону квадрата уменьшить на X метров, а другую увели чить на Х метров, то Р= -?• (20+ к)ч- 2 • (Ю~ У) , S = ^00-х. - ? - fc ^СЮ С^ ^ J наиб. =400// при jc = o . Следовательно, наибольшую площадь из всех прямоугольников с одинаковыми периметрами имеет квадрат. 18 Достаточно много экстремальных задач можно решать при изучении темы "Квадратный трехчлен". К исследованию квадратичной функции на экстремум сводятся многие задачи экономики, физики, техники, алгебры. Рассмотрим функцию, заданную формулой (/.^биг^юл. + с , где а., ё,с, - некоторые числа, причем о. ^ о , п. - переменная, п - е ^ Если -- ^/2а<:Д/, то при п.= -^/зл. данная функция принимает экстремальное значение. Если -%а> ^ и /2а\^/^ то данная функция принимает одно и • - • / /<й ^ц ,/ fft ./ то же экстремальное значение дважды: при ^\-• =• ~^72Q. i • /2 "• Л^~у2сг ~- /2 . Если - ^/2о, ^ \ , то данная функция принимает наибольшее ( наименьшее) значение всегда при п. =. i . В остальных случаях данная функция принимает экстремальное зна чение при натуральном п, которое ближе расположено на числовой прямой к числу - & /^ . Среди задач на оптимизацию есть задачи, которые могут быть ис пользованы как на уроках алгебры, так и на уроках геометрии. Это объяс няется тем, что с точки зрения^ содержания они геометрические (сформулированы в геометрических терминах), а по методу решения это задачи алгебры (они сводятся к определению экстремума функции мето дом опорной функции). Задача. Найти максимум произведения лу^ , если • х - ^ .^ ^ JL -^ о. с> с. 2 ' Решение: Найдем максимум произведения - х — • -"— ' - fc — , т.к. зсл/i а 2 - У с. 3 ( J у 22 максимально при тех же условиях, что и -• х . у - . z — . По уело - а.- 2 - ^ e Q - л 5 - у 2 г 2 , вию — — + -^- ^ — з- = < , тогда должно выполняться равенство: Тг^- Ч^ ? ^ • J Ј У 2 ^ - a - s " :: g 7- = ~сТ или -а"^ '^^'с'^ уу . Т.к. сумма слагаемых постоянна, то их произведение будет наибольшим когда они равны. Тогда m - OLK (^г ^ л-8-е -- /Г о ее. Ответ: ^• ^• ^ о m - CLX (^ i ) = j ^^ g <7 ' <э ' 19 1.7. Понятия о задачах математического программирования Математические модели реальных задач описываются уравнениями, системами уравнений или дифференциальными уравнениями. Но в школь ном курсе изучаются еще неравенства и системы неравенств, а их прило жения иллюстрирующих их применение для решения реальных задач от сутствуют. Для заполнения этого пробела в первых изданиях учебника "Алгебра и начала анализа" содержался пункт "Понятие о линейном про граммировании". Ниже приведем методику изложения трех основных за дач линейного программирования для изучения в математических кружках в средней школе. 1.7 Л. Транспортная задача линейного программирования 1. Постановка задачи : Пусть на двух станциях ^4 и /\, сосредоточено соответственно Ct , и 0.^ тонн груза, который необходимо доставить в пункты 6 , Ь-г., В, , в количестве I, , ^д , ^ , соответственно. Стоимость перевозки 1 тонны груза со станции у1, в пункты В, , Вд , &
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Лучший симулятор секса - это, безусловно, девушка: не зависает, имеет довольно много настроек и режимов, имеются сменные скины...
Спрашивайте на улицах вашего города!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru