Реферат: Лазеры - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Лазеры

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 3724 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

13 Реферат по физике на тему «Лазер» Выполнила Налётова Е.А. Проверил Лосев В.В. Оглавление. 1. Вступление. 3 2. Что такое лазер. 3 2.1 Первый лазер 3 2.2 Оптический квантовый генератор или лазер. 4 2.3 Лазер в работе. 5 3. Разновидности лазеров. 5 3.1 Газовые лазеры. 5 3.2 Газодинамический лазер. 6 3.3 Лазеры на красителях. 6 4. Функции лазерного луча. 7 5. Лазер в медицине. 8 5.1 Лазер в хирургии. 9 5.2 Лазер на охране зрения. 9 5.3 Лазер в гастроэнтерологии. 10 5.4 Лазер в стоматологии. 11 5.5 Меры безопасности. 11 6. Недавнее открытие. 11 7. Заключение. 12 Список литературы 13 1. Вступление . Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора -оптического квантового генератора, или лазера. В настоящее время слово « лазер » стало общеупотребительным. Ведь это устройство используется во всех сферах деятельности человека: промышленности, науке, медицине и т.п. Н о не каждый знает что это такое. На самом деле описание лазера заключено в его названии. Слово «лазер» составлено из первых букв английской фразы, означающей: «усиление света при помощи вынужденного излучения ». Он может вылечить надвигающуюся слепоту и на лету поразить вражеский самолёт, мгновенно просверлить отверстие в алмазе и раскроить тончайшую шелковую ткань. Он безболезненно заменяет сверло в стоматологическом кабинете, создаёт голографические эффекты, рассекает человеческую плоть без пролития крови и много е-многое другое. 2. Что такое лазер . 2.1 Первый лазер Работы по лазерам в лаборатории люминесценции ФИАН возникли по инициативе Н. Г. Басова , вызванной тем, что, начиная с 1958 года были опубликовали статьи о перспективности получения генерации в оптической области спектра с использованием индуцированного излучения . А затем американскими учеными (Мейманом и другими) в 1960 году были получены обнадеживающие результаты с рубином. А.М. Леонтович , М.Д. Галанин , З . А . Чижикова занялись этой проблемой . Весной 1961 г . эта группа учёных создала лазерную установку, в которой образец ру бина с концентрацией хрома 0,05% и длиной 4 см накачивался 2 импульсными лампами в кожухе с напылением MgO . На этой установке они добились генерации 18 сентября 1961 года. Тогда был какой-то предрассудок насчет формы образцов — все первые рубины были в форме параллелепипедов, и американ ские, и наши. Позже было понято, что это не играет роли, что важна т олько параллельность торцов кристаллов, на которые тогда и наносились зеркала. Потом появились образцы цилиндрической формы, и также, когда стали применять внешние зеркала — с брюстеровскими торцами. 2.2 Оптический квантовый генератор или лазер. Лазер также называется оптический квантовый генератор или генератор когерентного излучения . Разберем его устройство на примере сбора одной модели лазера. Возьмём стержень или пластинку, сделанную из материала, от которого мы хотим добиться излучения. Материал должен быть прозрачным, чтобы свет пронизы вал его на сквозь. Самые распространённые материалы для стержней – искусственно выращенные кристаллы рубина или граната (или стекло, в которое добавлено небольшое количество редкого элемента неодима). Стержни обычно бывают диаметром от 6 до 20 миллиметров и длинной от 10 до 60 сантиметров. Сам лазер часто именуется по материалу стержня. Так, выражение «рубиновый лазер» совсем не означает, что весь прибор сделан из этого драгоценного камня. Просто внутри него находится кристалл искусственного рубина . Рядом со стержнем поместим осветитель, его называют лампой накачки. Лампа будет импульсивной, вроде тех ламп– вспышек, к оторыми пользуются фотографы. В се процессы в атомах проходят за миллионные доли секунды, так что надолго включать её нет смысла. Осветитель вместе со стержнем окружим отражателем, чтобы ни один квант света накачки не пропал зря. Возле торцов рабочего стержня установим два зеркала: сзади – глухое, отражающее весь падающий на него свет, спереди – полупрозрачное. Зеркала необходимо установить строго параллельно друг другу и перпендикулярно оси стержня. Лазер готов. Осталось включить лампу. К несчастью увидеть своими глазами процесс, происходящий в лазере после вспышки лампы, мы не сможем. Он проходит слишком быстро. Но представить его можно. 2.3 Лазер в работе . После вспышки лампы п оток световой энергии попадает на стерж ень . Его атомы быстро переходят в возбуждённое состояние. С каждым мгновением таких возбужденных атомов стано виться всё больше и больше. Д олго в возбуждённом состоянии они не живут, в среднем всего одну стомиллионную долю секунды, а потом переходят в нормальное состояние , излучив при этом свет . Л ампа все ещё горит, и атомы вновь возбуждаются. Когда несколько атомов случайно излучают кванты вдоль оси стержня , начинается процесс накапливания энергии . После каждого столкновения с атомами число квантов удваивается, поток излучения движется вдоль стержня и растёт, как лавина. Отражаясь в зеркалах, излучение многократно пронизывает стержень, заставляя все атомы без исключения в нести свою долю энергии в общий поток света. Сквозь полупрозрачное зеркало этот свет вырывается наружу. Происходит в спышка . Её длительность всего около одной миллионной секунды. А лампа всё ещё горит, и через три миллионных доли секунды всё повторяется снова. И опять, и опять, до тех пор, пока яркости света уже потухающей лампы не станет мало для поддержания генерации. Именно так был сделан и работал первый лазер, построенный на кристалле рубина . Не вся энергия лампы накачки преобразуется в лазерную вспышку. Большая её часть, к несчастью, уходит на бесполезный и даже вредный н агрев стержня и зеркала. Мощные импульсные лазеры охлаждают потоком воздуха, воды, а иногда и жидким азотом. Частота повторения импульсов зависит то того, насколько хорошо стержень лазера выдерживает высокую температуру. Неодимовые и рубиновые лазеры дают одну – две вспышки в секунду, лазер на гранате – несколько сотен. Рекордная частота генерации для импульсного лазера двенадцать миллионов вспышек в секунду. Излучение таких лазеров воспринимается уже как непрерывное. 3. Разновидности лазеров. 3.1 Газовые лазеры . Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также, по-видимому, посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Газовые лазеры были созданы почти одновременно с рубиновыми лазерами, в том же 1960 году. Их рабочее вещество различные газы, заключённые в стеклянные трубки. Давление газов в этих трубках очень низкое, в сотни раз меньше атмосферного. На концах трубки – окошки, через которые луч света выходит наружу. Трубка также помещается между зеркалами. Всё, как в импульсном лазере, т олько лампы накачки нет. Газы при низком давлении хорошо проводят электрический ток, поэтому их атомы можно возбуждать электрическим разрядом. Ток проводит ся через проволочки – электроды, впаянные в стеклянную трубку. Тру бка с возбуждённым газом светится , а из её то рцов выходят лучи. Цвет лучей зависит от газ а заключён ного в трубку . Смесь гелия с неоном даёт красный луч, аргон – синий, ксенон – зелёный, криптон – жёлтый, а углекислый газ – невидимый тепловой, инфракрасный луч. Есть даже лазер на водян ых парах. Изобретен он был в конц е 20 века . Такой лазер даёт мощное тепловое излучение. Длина его волны чуть больше одной десятой миллиметра. Это самое длинноволновое излучение, полученное при помощи лазера. Разреженный газ в лазерной трубке очень мало рассеивает свет. Р азмеры трубок газовых лазеров можно делать очень большими: лазер длиной 5– 10 метров – вещь довольно обычная. Мощность его излуче ния может достигать тысячи ватт , то есть одного киловатта. 3.2 Газодинамический лазер. Газодинамический лазер похож на реактивный двигатель и работает также. В его камере сгорания сжигается угарный газ (окись углерода) с добавкой топлива (керосина, бензина, спирта). Получившаяся при этом смесь газов состоит из углекислого газа, азота и паров воды. Молекулы газов возбуждены , ведь температура в камере сг орания доходит до тысячи с лишни м градусов, а давление – до 20 атмосфер. Эти раскалённые газы из камеры сгорания вытекают через расширяющееся реактивное сопло, его ещё иногда называют соплом Лаваля. В нём газ разгоняется до сверхзвуковой скорости, охлаждаясь почти до нуля! Проносясь между зеркалами, молекулы газа начинают отдавать энергию в виде световых квантов, рождая лазерн ый луч, мощность которого 150– 200 киловатт. И это мощность не отдельной вспышки, а постоянного, устойчивого луча, сияющего, пока у лазера не кончиться горючие. 3.3 Лазеры на красителях. Называются они так потому, что их рабочая жидкость – раствор анилиновых красок (вроде тех, которыми красят шерсть и хлопок) в воде, спирте, кислоте и других растворителях. Жидкость налита в плоскую ванночку – кювету. Кювета, разумеется, установлена между зеркалам и. Вместо лампы – вспышки на первых порах использовались импульсные рубин овые лазеры, а позднее – газовые. Лазер– накачку помещают рядом , вводя его луч в кювету через окошко в корпусе. Сейчас, правда, удалось добиться генерации света и с импульсной лампой, но не на всех красителях. Растворы могут излучать импульсы света различной длины волны – от ультрафиолета до инфракрасного света – и мощностью от сотен киловатт до нескольких мегаватт (миллионов ватт), в зависимости от того, какой краситель налит в кювету. Лазеры на красителях помогают следить за состоянием атмосферы. Современные города накрыты «колпаком» пыльного, закопчённого воздуха. О степени его загрязнения можно следить по тому, насколько сильно в нём рассеиваются лазерные лучи с разной длиной волны. В чистом воздухе свет не рассеивается, е го лучи становятся невидимыми. Т акже бывают жидкостные и полупроводниковые лазеры. 4. Ф ункции лазерного луча. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности. В последние годы в одной из важнейших областей микроэлектроники - фотолитографии, без применения которой практически невозможно изготовление сверхминиатюрных печатных плат, интегральных схем и других элементов микроэлектронной техники, обычные источники света заменяются на лазерные. С помощью лазера на ХеСL (1=308 нм) удается получить разрешение в фотолитографической технике до 0,15 - 0,2 мкм. Дальнейший прогресс в субмикронной литографии связан с применением в качестве экспонирующего источника света мягкого рентгеновского излучения из плазмы, создаваемой лазерным лучом. В этом случае предел разрешения, определяемый длиной волны рентгеновского излучения (1=0,01-О,001 мкм), оказывается просто фантастическим. Лазерный луч может передавать сигналы, как радиоволны или электрический ток. Первая в СССР линия оптической связи передавала телефонные разговоры между Москвой и Красногорском по открытому лучу. Один из лазер ов был установлен на башне высотно го здания МГУ . Лазерный луч может идти по стеклянным нитям, как ток по проводам. Благодаря этому получа ют фотографии изнутри внутренних органов (например, желуд к а ) вводя волоконный световод через пищевод больного. Лазерный луч сжигает любой, даже самый прочный и жаростойкий материал. Движением режущего луча управляет ЭВМ, так что можно мгновенно определять точность резания и вносить требуемые поправки. Тонкую, вольфрамовую проволоку для электрических лампочек протягивают через отверстия в алмазах, пробитые лазерны м лучом. Рубиновые подшипники ( камни для часов ) обрабатывают на лазерны х станках – автоматах. Точность лазерных измерений очень высока . Сегодня лазерная установка отмечает малейшие движения грунта под знаменитой Пизанской башней . Лазеры так же используются в сельском хозяйстве, агрономы облучают им посадочный материал и получают ошеломляющие результаты, урожайность облучённого продукта выше прежней на 40%. Лазеры используются в военной промышленности, в данный момент существует достаточно большое количество лазерного оружия, но оно не совершенно, атмосферные явления снижают его эффективность, а вот в космосе он не заменим. Военное министерство США занялось оснащением лазерным оружием космических платформ. Заходя на посадку, самолёт движется по пологой траектории – глиссаде. Лазерное устройство, помогающее пилоту, особенно в непогоду, тоже названо «Глиссада». Его лучи позволяют точно сориентироваться в воздушном пространстве над аэродромом. Лазерный уровень дал возможность автоматизировать дорожные работы. Аэрофотосъёмка лазерным лучом позволяет точно определить границы арктических антициклонов, когда долгая полярная ночь не позволяет вести эту процедуру. Также анализ лазерного луча не заменим в картографии. В шоу бизнесе вы, наверное, не редко замечали иные световые эффекты применяемые для украшения сцен, это картины нарисованы лазерным лучом, а когда – ни будь, возможно, специалист по лазерной оптике станет в театре столь же привычной фигурой, как гримёр или декоратор. 5. Лазер в медицине . Основными преимуществами, стимулирующими применение лазеров в медицине, являются радикальность лечения, снижение сроков вмешательства, уменьшение числа осложнений, кровопотери, улучшение условий стерильности и т. д. В медицинских целях используются, в основном, твердотельные и газовые лазеры. Перспективным направлением можно считать применение излучения низкоэнергетических лазеров в видимой части спектра для стимулирования репаративных процессов при хронических длительно не заживающих ранах, трофических язвах, замедленной консолидации переломов, заболеваний обменного характера и др. 5.1 Лазер в хирург ии. Скальпелем делают разрез, з ажимом перекрывают крупные кровеносные сосу ды, которые пришлось перерезать, а т ампоном удаляют кровь с операционного поля. Крови в организме много; кроме больших сосудов, есть ещё множество мелких, капиллярных, которые не пережмёшь. Сейчас умеют останавливать кровь различными способами, а ещё лет сто пятьдесят назад рану приходилось прижигать, чтобы «заварить» концы сосудов и не дать им истечь кровью. Хирурги давно мечтали об инструменте , делающим бескровный разрез. Хорошо бы также, чтобы он был деликатен с тканями, в едь сегодня хирурги умеют делать операции на сетчатке глаза и даже мозге. А ч то может быть нежнее прикосновения луча света? Современная техника предложила инструмент, сочетающий в себе оба эти требования, - световой луч! Лазерным лучом можно сделать разрез шириной в тысячную долю миллиметра. В зависимости от энергии, которую он несёт, и времени его воздейст вия, он может «заварить» сосуд ( как говорят медики – коагулировать его ) или, наоборот, пробить в нём отверстие. Даже цвет луча оказался важен в хирургии. Кровь красная потому, что пропускает красные лучи и задерживает, поглощает лучи всех других оттенков и цветов. Поэтому рубиновый лазер для «заваривания» сосудов не пригодиться. А если использовать зелёный или синий лучи света, которые хорошо поглощаются кровью, можно добиться мгновенного образования сгустка крови, закупорившего перерезанный сосуд. Бывают случаи, когда необходимо разрушить повреждённую ткань, не затрагивая близлежащих и на пути стоящих сосудов. Тогда применяют гелий– неоновый или криптоновый лазер; луч красного цвета пройдёт сквозь кровеносные сосуды, н е принеся вреда, прямо в нужную точку. Это применяют в урологии при каменной болезни почек, лазер раздрабливает почечные камни, превращая их в песок, тем самым не нанося не каких повреждений тканям, стоящим на пути. 5.2 Лазер на охране зрения. Чрезвычайно полезным и удобным оказался лазер в офтальмологии – области медицины, ведающей зрением. Всего сорок лет назад диагноз «диабет» означал для больного близкую и верную смерть. Такое заболевание возникает вследствие недостатка инсулина. После создания искусственного инсулина жизнь больных была спасена. Но оказалось, что с годами вследствие нарушения обмена веществ, вызванн ого болезнью, сетчатка глаза тяжело поражается. Это приводит к слепоте. С ло й светочувствительных клеток, которому м ы обязаны зрением , пронизан кровеносными капиллярами. Оказалось, что при диабете часть их обескровливается, а часть растягивается и начинает «протекать», образуя многочисленные излияния. Начинается бурный рост других сосудов, которые отсасывают кровь из здоровой ткани, лишая её питания. Кроме того, новые сосуды из здоровой ткани непрочны и легко рвутся. От тяжёлых повторных кровоизлияний можно потерять весь глаз. Лазерный луч можно ввести в глаз прямо через зрачок. С его помощью можно отрезать ненужные сосуды, заварить те, которые протекают, и ликвидировать следы кровоизлияний. Так же с помощью лазера офтальмологи лечат глаукому. Это опасное глазное заболевание , которым страдает три процента населения планеты . Оно возникает, когда в гла зу повышается давление жидкости. Нужна сложная и опасная операция. Гигантские импульсы лазера могут пробить в задней поверхности радужной оболочки глаза микроскопические отверсти я , не успев нагреть живую ткань. Они послужат канальца ми для оттока внутриглазной жидкости. В итоге давление нормализуется, угроза слепоты отступает. 5.3 Лазер в гастроэнтерологии . При помощи лазера делают операции желудка и кишечника. Их стенки состоят из множества слоёв ткани, пронизанных кровеносными сосудами. При операции эти слои сшивают поочерёдно, сильно травмируя при этом ткань. К тому же всё время остаётся вероятным, что какой – то слой будет случайно проколот и это приведёт к перитониту – воспалению брюшной полости. Лазерный луч может один за другим аккуратно заварить эти слои тем самым, остановив кровотечение. Любой хирургический инструмент перед операцией нуждается в стерилизации. Лазерному лучу не только это не надо, но и он сам способен обеззараживать раны, убивая микробов и испаряя отмирающие ткани. Целительный луч можно ввести прямо в желудок больного при помощи гибкого световода и оперировать, не вскрывая брюшной полости. Но не только в желудок можно ввести световод, но и в сердце. Лазерный луч способен провести операцию на сердц е изнутри, освободив больного от страданий. 5.4 Лазер в стоматологии. В стоматологии лазер с успехом заменяет сверло. Прежде чем накладывать пломбу, необходимо удалить почерневшую, пораженную кариесом ткань зуба. Для многих людей сверление зубов - процесс болезненный и неприятный. Однако, похоже, в скором времени проблем с этим не будет. Световой импульс лазера хорошо отражается от белой блестящей поверхности здоровой зубной ткани и поглощается потемневшей, больной, которую он разогревает и испаряет вместе с микробами. 5.5 Меры безопасности. Все возрастающий интерес к использованию лазеров в медицине привел к необходимости создания специальных лазерных отделений и операционных, достаточно приспособленных к безопасной эксплуатации. Главным вопросом становится защита медицинского и технического персонала от влияния вредных факторов лазерного излучения. Операционное помещение должно удовлетворять следующим специальным требованиям: стены и потолок помещения должны быть окрашены темной матовой краской, а стекла окон — белой матовой краской, чтобы предохранить зрение врача и пациента от поражения лазерным излучением, случайно отраженным от стен и потолка помещения. В нем необходима хорошая приточно-вытяжная вентиляция, входные двери должны быть оборудованы светящимся табло лазерной опасности, загорающимся при включении установки. 6. Недавнее открытие. Любопытное открытие сделали специалисты биофизической лаборатории The University of Texas at Austin (США). Используя лазерное излучение низкой интенсивности, ученые смогли не только значительно ускорить регенерацию поврежденных отростков нервных клеток, но и изменить направление их роста. Впервые идея манипулирования нейронами с помощью лазерных лучей возникла в начале 2001 года. Было создано устройство, которое можно условно назвать оптическим манипулятором, позволяющее перемещать живые микроскопические объекты, обладающие способностью проводить электрические импульсы. Эффект такого перемещения основывается на способности белковых молекул, принимающих участие в регенерации, "притягиваться" к центру пучка лазерного света. Пока подобные манипуляции возможны только с отдельными нервными клетками in vitro . Используя тончайший пучок лазерного света, исследователи изменяют общее направление роста нейронов более чем на 90 градусов и увеличивают скорость их регенерации примерно в шесть раз. В настоящее время ученые разрабатывают технологию одновременного равномерного воздействия лазерного луча на множество нейронов. Если их работа окажется успешной, возможно, метод найдет применение в клинической практике. Несколько совмещённых изображений Нерона, находящегося под воздействием лазерного луча. Наблюдается рост клетки под углом : от исходной (нижней) позиции до конечной (верхней). Время эксперимента 20 минут. 7. Заключение. Всего 44 года прошло с момента изобретения лазера. За это время он успешно и глубоко укоренился в человеческой жизни. Многие функции лазера стали просто незаменимы. Да ещё вдобавок лазер режет, сваривает, куёт, закаливает, сверлит, кроит, проверяет качество обработки деталей и делает множество других, не менее важных дел, для которых, казалось бы, совершенно не годиться луч света. Но это не так. Благодаря нему многие процессы в промышленности упростились, были найдены новые методы лечения, измерения, регулировки и др. А ведь раньше никто и предположить не мог, что из забавного математического курьеза, получится такое замечательное изобретение, как лазер. 8. Список литературы 1. Лазеры в клинической медицине. Под ред. Д. С. Плетнева. — М., Медицина. 2. Энциклопедический словарь юного физика (гл.редактор Мигдал А.Б.) Москва “Педагогика” 1991г. 3. О.Ф.Кабардин “Физика” Москва “Просвещение” 1988г 4. Medicus Amicus #6, 2004
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Мужик решил развестись с женой, собрал по квартире её вещи и привёз эти вещи её родителям. А там на двери замок и записка: "Будь мужчиной! Пожалей нас, стариков!".
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по физике "Лазеры", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru