Курсовая: Первообразная функция и неопределенный интеграл. Свойства неопределенного интеграла - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Первообразная функция и неопределенный интеграл. Свойства неопределенного интеграла

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 2963 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной курсовой работы

Узнайте стоимость написания уникальной работы

23 План работы и содержание 1. Введение 1 2. История интегрального исчисления 2 3. Первообразная и неопределенный интеграл 6 4. Таблица интегралов 8 5. Некоторые свойства неопределенного интеграла 10 6. Интегрирование по частям 14 7. Заключение 20 8. Список литературы 21 1. Введение Математика - одна из самых древних наук. Труды многих ученых вошли в мировой фонд и стали основой современных алгебры и геометрии. В конце XVII в., когда развитие науки шло быстрыми темпами, появились понятия дифференцирование, а вслед за ним и интегрирование. Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые– математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решил исследовать интеграл и его применение. 2. История интегрального исчисления История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античн oe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.) Символ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa ). Само слово интеграл придумал Я. Б е р н у л л и (1690 г.) . Вероятно, оно происходит от латинского integro , которое переводится как приводить в прежнее состояние, восстанавливать. ( Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина интеграл иное: слово integer означает целый. В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики — интегральное исчисление ( calculus integralis ), которое ввел И. Бернулли. Другие известные ермины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F ( x ) = f ( x ) dx — начальная (или первоначальная, или первообразная) для f ( x ), которая получается из F ( x ) дифференцированием. В современной литературе множество всех первообразных для функции f (х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную. b А f ( x ) dx a - называют определенным интегралом (обозначение ввел К. Фурье (1768— 1830), но пределы интегрирования указывал уже Эйлер). Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 — ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту. Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольников стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон. С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа (3.10/71< <3.1/7), нашел объемы шара и эллипсоида, площадь сегмента параболы и т. д. Сам Архимед высоко ценил эти результаты: согласно его желанию на могиле Архимеда высечен шар, вписанный в цилиндр (Архимед показал, что объем такого шара равен 2/3 объема цилиндра). Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления. Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод — метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f (х), которым тем не менее приписывали площадь, равную бесконечно малой величине f (х) dx . В соответствии с таким пониманием искомая площадь считалась равной сумме S = f ( x ) dx a < x < b - бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме — нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму. На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571— 1630) в своих сочинениях “Новая астрономия”. Рис 1. (1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6 ec конечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598 — 1647) и Э.Торричелли (1608— 1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях. Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f ( x ) и y = f ( x )+ c . Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b — а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е. S = S 1 = c ( b – а ). Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф 1 и Ф 2 по отрезкам равной длины (рис. 1 ,в). Тогда площади фигур Ф 1 и Ф 2 равны. Аналогичный принцип действует в стереометрии и оказывается полезным при нахождении объемов. В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = х n , где п — целое (т.е по существу вывел формулу х n dx = (1/ n +1)х n +1 ), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630— 1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов. Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона — Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано. Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли) . В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801— 1862), В.Я.Буняковский ( 1804— 1889), П.Л.Чебышев (1821— 1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции. Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б. Римана (1826— 1866), французского математика Г.Дарбу ( 1842— 1917). Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838— 1922) теории меры. Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875 — 1941) и А. Данжуа (1884— 1974), советским математиком А. Я. Хинчинчиным (1894— 1959). 3. Первообразная и неопределенный интеграл Рассмотрим задачу: Дана функция f ( x );требуется найти такую функцию F ( x ),производная которой равна f ( x ),т.е. F
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Начальник тюрьмы приказывает дежурному надзирателю:
- Наведите порядок в камерах и коридорах. К нам едет губернатор!
- Неужели?! Наконец-то этот пидорас попался!
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по математике "Первообразная функция и неопределенный интеграл. Свойства неопределенного интеграла", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru