Реферат: Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами

Банк рефератов / Математика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 8705 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

 Государственный комитет Российской Федерации по высшему образованию Саратовский ордена Трудового Красного Знамени государственный университет им. Н.Г.Чернышевского Кафедра математического анализа ИССЛЕДОВАНИЕ НАИЛУЧШИХ ПРИБЛИЖЕНИЙ НЕПРЕРЫВНЫХ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ ТРИГОНОМЕТРИЧЕСКИМИ ПОЛИНОМАМИ ДИПЛОМНАЯ РАБОТА студентки 524 группы механико-математического факультета Чуркиной Любови Васильевны Научный руководитель к.ф.-м.н, доцент Тимофеев В. Г. Заведующий кафедрой доктор ф.-м.н., профессор Прохоров Д.В. г.Саратов-1996 г. Оглавление. Наименование Стр. Введение 3 §1. Некоторые вспомогательные определения 7 §2. Простейшие свойства модулей нерперывности 20 §3. Обобщение теоремы Джексона 24 §4. Обобщение неравенства С.Н.Бернштейна 27 §5. Дифференциальные свойства тригонометрических полиномов, аппроксимирующих заданную функцию 30 §6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена 34 §7. Основная теорема 44 §8. Решение задач 47 Литература 50 Введение Дипломная работа посвящена исследованию наилучших приближений непрерывных периодических функций тригонометрическими полиномами. В ней даются необходимые и достаточные условия для того, чтобы наилучшие приближения имели заданный (степенной) порядок убывания. Дипломная работа носит реферативный характер и состоит из “Введения” и восьми параграфов. В настоящей работе мы рассматриваем следующие задачи: 1. При каких ограничениях на непрерывную функцию F ( u ) (-1 я u я +1) её наилучшие приближения E n [ F ;-1,+1] обыкновенными многочленами имеют заданный порядок яя ( n -1 )? 2. При каких ограничениях на непрерывную периодическую функцию f ( x ) её наилучшее приближение E n [ f ] тригонометрическими полиномами имеют заданный порядок яя ( n -1 )? Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать лишь задачу 2. Мы ограничимся случаем, когда я я я яяя N я я , для некоторого я , где я я я я - функция сравнения р-го порядка и для 0<я я < я яяяя С.Н.Бернштейн, Д.Джексон и Ш.Валле-Пуссен получили зависимости между оценками сверху для E n [ f ] и дифференциальными свойствами f . Некоторые дополнения к их теоремам доказаны А.Зигмундом. нам предстоит, поэтому, получить зависимости между дифференциальными свойствами f и оценками E n [ f ] снизу. Впервые задачами типа 1 занимался С.Н.Бернштейн. А именно, им получено ассимптотическое равенство: , где я - некоторое число. Наша основная теорема формулируется следующим образом: Пусть я яя N я я я Для того чтобы необходимо, чтобы для любого натурального k>я, и достаточно, чтобы для некоторого натурального k>я где Изложим теперь кратко содержание каждого из параграфов работы. В §1 даётся ряд вспомогательных определений, которые понадобятся в дальнейшей работе. В §2 выводятся основные свойства модулей непрерывности высших порядков. Почти все эти свойства используются в дальнейшем тексте. §3 посвящен обобщению теоремы Джексона. Как известно, Джексон доказал следующую теорему: если f имеет непрерывную r-ую производную f (r) , то Таким образом, теорема Джексона дает оценку сверху для наилучших приближений, если известны дифференциальные свойства аппроксимируемой функции. В 1947 г. появилась работа С.Н.Бернштейна [1]. Одна из теорем этой работы содержит в качестве следствия такое предложение: пусть Тогда В §3 доказываем: (*) В §4 формулируется доказанное в работе С.Б.Стечкина [2] обобщение известного неравенства С.Н.Бернштейна [3], [4] для производных от тригонометрического полинома. Мы приводим затем ряд следствий из нашего неравенства (*). Они играют существенную роль при доказательстве теорем §5. В §5 рассматривается следующая задача. Пусть тригонометрический полином t n , близок в равномерной метрике к заданной функции f или последовательность полиномов t n достаточно хорошо аппроксимирует заданную функцию f . Как связаны тогда дифференциальные свойства f с дифференциальными свойствами t n ? Если t n , образуется из f посредством регулярного метода суммирования рядов Фурье, то ответ тривиален: для того чтобы , необходимо и достаточно, чтобы равномерно относительно n . ( f я H k [ я ], если ). Оказывается, что этот результат сохраняется и для полиномов наилучшего приближения: для того, чтобы равномерно относительно n . Отметим еще один результат параграфа: для того чтобы , необходимо и достаточно чтобы . §6 посвящён “обратным теоремам” теории приближения. Известно предложение: пусть . Тогда, если я не целое, r= [ я ], я = я - r , то f имеет нерперывную производную . Случай целого яя рассмотрен Зигмундом. В этом случае . Нетрудно показать, что эти два предложения эквивалентны следующему: пусть 0< я < k и . Тогда . В работе [3] С.Н.Бернштейн доказал также эквивалентность условий и . Мы переносим эти теоремы на условия вида , где я яя N я я я Кроме того, в этом параграфе доказано, например, такое предложение: пусть k - натуральное число и ; для того, чтобы , необходимо и достаточно выполнение условия . В конце параграфа даются уточнения теорем Валле-Пуссена. В §7 доказывается основная теорема. Мы даём здесь же оценку E n [ f ] снизу, если . Именно, тогда Случай я =0 установлен С.Н.Бернштейном [3]. В §8 мы рассматриваем несколько решений задач с использованием различных модулей непрерывности. §1. Некоторые вспомогательные определения. В работе рассматриваются непрерывные функции f с периодом 2я и их приближение тригонометрическими полиномами. Через t n ( x ) обозначается тригонометрический полином порядка не выше n , а через t n * ( x ) =t n * ( x,f )-тригонометрический полином, наименее уклоняющийся от f среди всех t n (x) . Мы полагаем и пишем Введём ряд определений. Определение 1. При каждом фиксированном классом Липшица порядка я называется множество всех непрерывных функция f , модуль непрерывности каждой из которых удовлетворяет условию где С 8 -какая-нибудь положительная постоянная, которая не зависит от я и которая, вообще говоря, является различной для разных функций. Этот класс обозначается H я или Lip яя Определение 2. Обозначим при фиксированном натуральном r через W (r) L класс функций f , которая имеет абсолютно непрерывные производные до ( r- 1) порядка и у которой r -я производная принадлежит классу L . Определение 3. Для непрерывной на [ a,b ] функции f ( x ) назовём модулем непрерывности первого порядка или же просто модулем непрерывности функцию я я я я яя я f;я я, определённую на [ 0, b-a ] при помощи следующего равенства: (1.1) или, что то же самое, (1.1’ ) Свойства модуля непрерывности : 1) яяяяяяя 2) яяяяя есть функция, монотонно возрастающая; 3) яяяя есть функция непрерывная; 4) яяяяя есть функция полуаддитивная в том смысле, что для любых и (1.2) Доказательство. Свойство 1) вытекает из определения модуля непрерывности. Свойство 2) вытекает из того, что при больших я нам приходится рассматривать sup на более широком множестве значений h . Свойство 4) следует из того, что если мы число представим в виде h=h 1 +h 2 , и , то получим Из неравенства (1.2) вытекает, что если то т.е. (1.3) Теперь докажем свойство 3). Так как функция f ( x ) равномерно непрерывна на [ a,b ], то при и, следовательно, для любых я, при а это и означает, что функция яяяя непрерывна. Определение 4. Пусть функция f ( x ) определена на сегменте [ a,b ] . Тогда для любого натурального k и любых и h>0 таких, что k-й разностью функции f в точке x с шагом h называется величина (1.4) а при и h>0 таких, что k-й симметричной разностью - величина (1.4’ ) Лемма 1. При любых натуральных j и k справедливо равенство (1.5) Доказательство. Действительно, так как при любом натуральном k то Лемма доказана. Лемма 2. При любых натуральных k и n верна формула: (1.6) Доказательство. Воспользуемся индукцией по k . При k= 1 тождество (1.6) проверяется непосредственно: . Предполагая его справедливость при k- 1 ( k я2), получим Лемма доказана. Определение 5. Если измеримая периода ( b-a ) функция f ( x )я L q ( L q -класс всех вещественных измеримых на [ a,b ] функции f ( x )), то под её интегральным модулем гладкости порядка k я1 понимают функцию Лемма 3. Если то справедливо (1.7) Доказательство. В самом деле, и так далее. Лемма доказана. Определение 6. Если функция f(x) ограничена на [ a,b ], то под её модулем гладкости порядка k я 1 понимают функцию заданную для неотрицательных значений и в случае, когда k =1, представляющую собой модуль непрерывности. Свойства модулей гладкости: 1) 2) есть функция, монотонно возрастающая; 3) есть функция непрерывная; 4) При любом натуральном n имеет место ( точное) неравенство (1.8) а при любом -неравенство (1.8’ ) 5) Если функция f ( x ) имеет всюду на [ a,b ] непрерывные производные до ( r- 1)-го порядка, и при этом ( r-1 )-я производная , то (1.9) Доказательство. 1) Свойство 1) немедленно вытекает из того, что 2) Свойство 2) доказывается точно так же, как и для случая обычного модуля непрерывности. 3) Предполагая для определённости, что яяя’ , получим Этим непрерывность функции я k ( я ) доказана. 4) Используя равенство лемму 2 §1, имеем Этим неравенство (1.8) доказано. Неравенство (1.8’ ) следует из монотонности функции я k ( t ) и неравенства (1.8). 5) Используя равенства лемму 1 и лемму 3 §1, получим Определение 7. Пусть k -натуральное число. Будем говорить, что функция есть модуль непрерывности k -го порядка функции f , если где -конечная разность функции f k -го порядка с шагом h : Среди модулей непрерывности всех порядков особенно важное значение имеют случаи k= 1 и k= 2. Случай k= 1 является классическим; вместо мы будем писать просто и называть эту функцию модулем непрерывности ; функцию мы будем называть модулем гладкости . Определение 8. Зададим натуральное число k. Будем говорить, что функция -есть функция сравнения k- го порядка, если она удовлетворяет следующим условиям: 1) определена для , 2) не убывает, 3) , 4) Нетрудно показать, что если f яя0, то есть функция сравнения k- го порядка (см. Лемму 5 §2). Определение 9. Зафиксируем натуральное число k и функцию сравнения k -го порядка . Будем говорить, что функция f принадлежит к классу , если найдётся константа С 10 >0 такая, что Вместо будем писать просто H k я . Если для последовательности функций f n (n=1,2,...) где С 10 не зависит от n , то будем писать: равномерно относительно n . Понятие классов является естественным обобщением классов Липшица и классов функций, имеющих ограниченную k -ю производную. Определение 10. Зафиксируем число я >0 и обозначим через p наименьшее натуральное число, не меньше чем я ( p=- [- яя ]). Будем говорить, что функция принадлежит к классу , если она 1) есть функция сравнения p -го порядка и 2) удовлетворяет условию: существует константа С 11 >0 такая, что для Условие 2) является небольшим ослаблением условия “ не убывает”. Функции класса N я будут играть основную роль во всём дальнейшем изложении. Определение 11. Будем говорить, что функция имеет порядок , если найдутся две положительные константы С 12 и С 13 такие, что для всех t , для которых определены функции и , . При выполнении этих условий будем писать . Определение 12. Ядром Дирихле n -го порядка называется функция (1.10) Это ядро является тригонометрическим полиномом порядка n и при этом (1.10’ ) Определение 13. Ядром Фейера n -го порядка называется функция (1.11) Ядро Фейера F n ( t ) является средним арифметическим первых n ядер Дирихле, и значит, является тригонометрическим полиномом порядка ( n-1 ). Так что имеют место равенства (1.11’ ) (1.11’ ’ ) где D k ( t )-ядра Дирихле. Определение 14. Ядром Джексона n -го порядка называется функция (1.12) Свойства ядер Джексона. а) При каждом n ядро J n ( t ) является чётным неотрицательным тригонометрическим полиномом порядка 2 n -2 вида , где j k =j k ( n ) - некоторые числа б) в) г) Доказательство. а) Учитывая, что для ядер F n ( t ) Фейера имеют место равенства получим где j k ( k =1,2,...,2 n -2) -некоторые числа, и в частности, в силу ортогональности тригонометрической системы функций найдем Этим свойство а) доказано. б) Это равенство следует из равенства, полученного для j 0 . в) Так как при любом и при ( ** ), то г) Совершенно аналогично случаю в) получим Что и требовалось доказать. Определение 15. Ядром типа Джексона порядка n называется функция , (1.13) n =1,2,3,..., k -натуральное, где (1.13’ ) Ядра типа Джексона обладают следующими свойствами: а) б) При фиксированном натуральном k и произвольном n ядро J n,k ( t ) является чётным неотрицательным тригонометрическим полиномом порядка k ( n -1) в) n 2k- 1 , т.е. существуют постоянные С 14 > 0 и С 15 >0, такие, что при всех n =1,2,3,... будет г) При любом я>0 имеет место неравенство д) При любом натуральном Доказательство свойств ядер типа Джексона. а) Это свойство вытекает из равенств определения б) Это свойство следует из 1-го неравенства определения и из того, что в силу равенств (1.11) и (1.11‘ ’ ) будет (1.14) где - некоторые целые числа. в) Учитывая неравенства (**), будем иметь (1.15) С другой стороны (1.15‘ ) г) Это неравенство вытекает из первого равенства определения и неравенства (1.15‘ ) д) Действительно, с одной стороны, в силу неравенств (1.15‘ ) и (**) (1.16) где A-const , а с другой стороны, учитывая соотношение (1.15), неравенств (**) и из неравенства sin t я t , при всех t я0 (***), имеем (1.16‘ ) A 1 -const . Неравенства (1.16) и (1.16‘ ) равносильны условию, что и требовалось доказать. §2. Простейшие свойства модулей нерперывности. Этот параграф носит вспомогательный характер. Здесь устанавливается несколько простейших свойств модуля нерперывности высших порядков. Все рассматриваемые здесь функции f 1 , f 2 , ... - непрерывны. ЛЕММА 1. Для любого натурального k и любого я я0 (2.1) Доказательство: по определению, Лемма доказана. ЛЕММА 2. Пусть f и l -натуральные числа, l0 (5.7) равномерно относительно n . Следствие 3.2. Пусть для некоторого натурального k и любого натурального n Тогда (5.8) Теорема 4. Для того, чтобы , необходимо и достаточно, чтобы (5.9) равномерно относительно n. Это вытекает из теоремы 1, следствия 3.1 и того замечания что если выполнено условие (5.9), то . Теорема 5. Для того, чтобы , необходимо и достаточно, чтобы (5.10) Это доказывается аналогично теореме 4, только вместо следствия 3.1 нужно воспользоваться следствием 3.2. Неравенства теоремы 3 имеют тот недостаток, что их правые части явно зависят от константы С 20 . Таким образом, если вместо фиксированного номера n и одного полинома t n рассматривать последовательность полиномов t n ( n =1,2,...), то С 20 окажется, вообще говоря, независящей от n и теорема 3 даёт оценки, не равномерные относительно n . Покажем как избавиться от этого неудобства. Теорема 6. Пусть для некоторого натурального k (5.11) и (5.12) Тогда для любого я>0 (5.13) равномерно относительно n . Доказательство. Пусть сперва . Из неравенства (5.2) следует, что и на основании (5.11) (5.14) Рассмотрим случай . Положим в (5.14) . Тогда получим Из этого неравенства, в силу (4.7), следует, что Но так как, по условию, , то Отсюда Окончательно, и теорема доказана. В следующем параграфе будет показано, как можно видоизменить ограничения (5.11) теоремы 6. §6. Обобщение обратных теорем С. Н. Бернштейна и Ш. Валле-Пуссена. В этом параграфе обобщаются и уточняются так называемые “обратные теоремы” теории приближения. Речь идёт об оценке дифференциальных свойств функции f , если известны свойства последовательности её наилучших приближений E n . Лемма 9. Зададим натуральное число k , и пусть (6.1) и . (6.2) Тогда (6.3) Доказательство. Имеем, согласно (2.1), Но из (2.10) и (6.2) получаем а из (2.2) и (6.1) Поэтому левая часть этого неравенства не зависит от n , а поэтому и лемма доказана. Для получения хороших оценок обычно достаточно взять . Однако на исключена возможность, что в некоторых случаях другой выбор может оказаться предпочтительнее. Теорема 7. Пусть k -натуральное число, функция не убывает и (6.4) Для того чтобы , необходимо и достаточно выполнение условия (6.5) Доказательство. Необходимость условия (6.5) вытекает из следствия 3.2. Установим его достаточность, для чего воспользуемся леммой 9. Получаем: Положим здесь ; тогда для будем иметь и поэтому и теорема доказана. Отметим два следствия из этой теоремы. Следствие 7.1. Пусть k -натуральное число, функция не убывает и (6.6) Для того чтобы , необходимо и достаточно выполнение условия (6.7) Следствие 7.2. Пусть k -натуральное число и Если и (6.8) то равномерно относительно n . Это вытекает из теорем 7 и 6. Теорема 7 показывает, что нужно добавить к условию (6.4), чтобы получить . Теперь мы получим оценки для , исходя только из условий вида (6.4). Попутно выясняется, что при некоторых дополнительных ограничениях на функцию условие (6.5) становится излишним. Суть дела в том, что при этих ограничениях (6.4) влечёт (6.5). Лемма 10. Пусть (6.9) где . Тогда для любого натурального k (6.10) Доказательство. Зафиксируем натуральное число n , определим натуральное p из условий и построим последовательность номеров положив Для оценки представим в таком виде: Так как , то отсюда (6.11) Оценим U l (k) . Имеем для l= 1,2,..., p откуда Но есть тригонометрический полином порядка не выше n l . Поэтому по неравенству С.Н. Бернштейна, (6.12) Заметим теперь, что, в силу определения последовательности n l , и для Поэтому, пользуясь ещё монотонностью последовательности F n 2 находим, что для (6.13) При помощи (6.11), (6.12) и (6.13) находим окончательно: и лемма доказана. Теорема 8. Для любого натурального k и любого (6.14) Доказательство. Имеем Отсюда, по лемме 10, Воспользуемся теперь леммой 9. Получаем: Если , то . Кроме того, Поэтому для и теорема доказана. Мы обращаемся теперь к рассмотрению вопроса о том, при каких ограничениях на E n условие (6.4) влечёт Теорема 9. Зададим натуральное число k ; пусть и . Для того чтобы , необходимо и достаточно выполнение условия (6.15) Доказательство. Необходимость условия (6.15) вытекает из теоремы 1. Докажем его достаточность. Согласно теореме 8, для Положим здесь и заметим, что тогда для и, в силу условия , Поэтому для и теорема доказана. Следствие 9.1. Пусть и . Тогда для всех натуральных классы эквивалентны. Следствие 9.2. Пусть и . Если то для любого фиксированного натурального равномерно относительно n . Рассмотрим теперь следующий вопрос. как связаны приближения функции f с приближениями и дифференциальными свойствами её производных f (r) ? Теорема 10. Зададим натуральное число r, и пусть (6.16) где (6.17) Тогда f имеет непрерывную производную f (r) и (6.18) С.Н.Бернштейн [3] доказал такую теорему: если ряд сходится, то функция f имеет непрерывную производную f (r) . Рассмотрение этого доказательства С.Н.Бернштейна показывает, что на самом деле им установлено следующее, более общее предложение: пусть выполнены условия (6.16) и (6.17). Тогда функция f имеет непрерывную производную f (r) и равномерно относительно x . В ходе доказательства теоремы 10 мы вновь установим это предложение. Доказательство. при . Поэтому равномерно относительно x . Отсюда следует, что если n k ( k =0,1,2,...) есть возрастающая последовательность номеров, то Зафиксируем натуральное число n и положим Тогда будем иметь (6.19) где Докажем, что формулу (6.19) можно продифференцировать почленно r раз, т.е. (6.20) Для этого достаточно установить, что ряд справа равномерно сходится. Прежде всего, оценим . Имеем откуда Оценим теперь . По неравенству С.Н.Бернштейна, Пользуясь этой оценкой, получаем: Но Поэтому (6.21) Итак, доказана сходимость ряда , а вместе с этим установлена и формула (6.20). Из (6.20) и (6.21) вытекает, что и теорема доказана. В некоторых случаях оценка (6.18) может быть упрощена. Пусть, например, (6.22) Тогда Поэтому при выполнении условия (6.22) вместо (6.18) можно написать Следствие 10.1. Пусть r -натуральное число и сходится ряд Тогда (6.23) Теорема 11. Пусть r -натуральное число и для функции f сходится ряд Тогда для любого натурального k и любого (6.24) Доказательство. Имеем Отсюда, по лемме 10, Далее, согласно теореме 10, Воспользуемся теперь леммой 9. Получаем Заметим, что Таким образом, если , то и теорема доказана. §7. Основная теорема. Обратимся теперь к рассмотрению следующего вопроса: каковы необходимые и достаточные условия того, чтобы где -заданная невозрастающая функция? Насколько нам известно, эта задача не была до сих пор решена даже для случая . Мы решим её для функций сравнения . Лемма 11. Пусть и для некоторого натурального (7.1) Тогда существует такая константа с >0, что (7.2) Доказательство. Согласно (7.1), найдутся две такие константы С 60 >0 и C 61 >0, что (7.3) Последнее из этих неравенств, теорема 1 и теорема 3 влекут неравенство (7.4) В силу (2.1) и (2.2), имеем Отсюда Пользуясь (7.3) и (7.4), находим, далее (7.5) Вспомним теперь, что . Это даёт нам для Подставляя эту оценку в (7.5), получаем (7.6) Мы можем без ограничения общности считать, что здесь . Положим в (7.6) Тогда получим окончательно и лемма доказана. Основная теорема. Пусть . Для того чтобы (7.7) необходимо, чтобы для всех натуральных , и достаточно, чтобы для некоторого натурального . (7.8) Доказательство. Пусть имеет место (7.7), т.е. найдутся две положительные константы С 67 и С 68 , для которых (7.9) Тогда, по теореме 1 и в силу первой половины неравенства (7.9), для любого k имеем т.е. Отсюда, в силу , и если , то, ввиду монотонности и , Далее, из второй половины неравенства (7.9) и теоремы 9 вытекает существование константы С 72 такой, что для любого Этим заканчивается доказательство необходимости условия (7.8). Пусть имеет место (7.8): (7.10) с С 73 >0. Тогда по теореме 1 и в силу второй половины неравенства (6.10), а по лемме 11, где С 77 >0. Таким образом, установлена достаточность условия (7.8), и основная теорема полностью доказана. Приведём в заключение обобщение леммы 11 на тот случай, когда оценки сверху и снизу имеют разные порядки. Теорема 12. Пусть и (7.11) Тогда (7.12) Доказательство. Имеем, как при доказательстве леммы 11, Положим здесь Тогда получим, что Теорема доказана. §8. Решение задач. Пример 1. Пусть Тогда при каждом Пример 2. Пусть график функции f ( x ) имеет вид, изображённый на рис.8.1. Тогда график функции показан на рис.8.2. Рис. 8.1. Рис. 8.2. Пример 3. Пусть при и пусть - периодическое продолжение функции на всю ось. Рис. 8.3. Рис. 8.4. Тогда если функцию рассматривать на сегменте длины так, что (рис. 8.3) то (рис. 8.4) т.е. модуль непрерывности функции в точке не достигает своего наибольшего значения и, следовательно, отличается от модуля непрерывности этой функции на всей оси. Пример 4. При функция является модулем непрерывности. Пример 5 . При функция является модулем непрерывности. Пример 6. При имеем так что при всех будет . Литература. 1. Бернштейн С.Н. О свойствах однородных функциональных классов // Доклады Ак. Наук СССР,-1947.-№57.-с.111-114. 2. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137. 3. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени // Сообщ. Харьк. Матем. о-ва (2), -1912.-№13.-с.49-144. 4. Бернштейн С.Н. Экстремальные свойства полиномов и наилучшее приближение непрерывных функций одной вещественной переменной. Часть I,-М.-Л.,-1937. 5. Никольский С. Обобщение одного неравенства С.Н.Бернштейна // Доклады Ак. Наук СССР,-1948.-№65.-с.135-137. 6. Гончаров В.Л. Теория интерполирования и приближения функций.-М.-Л.,-1934. 7. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. -М.: Наука.-1977.-с.512. 8. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Доклады Ак. Наук СССР,-1949.-№65.-с.135-137. 9. Тиман А.Ф. Теория приближения функций функций действительного переменного. -М.:ГИФМЛ,-1960.-с. 624. 10. Ахиезер Н.И. Лекции по теории аппроксимаций.-М.:ГИТТЛ,-1947.-324. 11. Арестов В.В. О равномерной регуляризации задачи вычисления значений оператора // Математические заметки,-т.22.-1977.-№2.-с.231-243. 12. Стечкин С.Б. О порядке наилучших приближений непрерывных функций // Изв. АН СССР-Математика,-1931.-№15.-с.219-242.

1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Какая богатая и процветающая страна - эти Объединенные Арабские Эмираты, а ведь там все построено на песке.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по математике "Пpиближения непpеpывных пеpиодических фyнкций тpигонометpическими полиномами", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru