Реферат: Критерии оценивания качества воспроизведения изображений - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Критерии оценивания качества воспроизведения изображений

Банк рефератов / Информатика, информационные технологии

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 820 kb, скачать бесплатно
Обойти Антиплагиат
Повысьте уникальность файла до 80-100% здесь.
Промокод referatbank - cкидка 20%!

Узнайте стоимость написания уникальной работы

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

“БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ”


кафедра Сетей и устройств телекоммуникаций










РЕФЕРАТ

На тему:


«Критерии оценивания качества воспроизведения изображений»











МИНСК, 2008


1 Алгоритмы, учитывающие систему визуального восприятия человека


Результаты объективных измерений должны хорошо согласовываться с результатами субъективных измерений для одной и той же видеопоследовательности. Это требование обуславливает главную сложность разработки объективных методов.

На практике, к сожалению, достаточно часто встречаются ситуации, когда исходное и обработанное изображение кажутся наблюдателю идентичными, в то время как объективные методы для тех же самых изображений дают очень большую ошибку. Учитывая то, что оценка качества человеком является решающей, подобная погрешность при объективных измерениях бывает просто не допустима. По этой причине был разработан ряд алгоритмов, учитывающих систему визуального восприятия человека.


Мультиразмерная ошибка


Одним из недостатков стандартных алгоритмов является тот факт, что вычисления ошибок производятся с учетом всего исходного изображения. Альтернативными являются измерения, имеющие некоторое сходство с системой визуального восприятия человека путем приписывания большего веса фрагментам с низким разрешением, и меньшего веса детальным изображениям.

Рассмотрим различные уровни разрешения, которые обозначим через r ? 1. Для каждого уровня r изображение разбивается на блоки c b 1 по bn, где n зависит от шкалы r. Например, при r = 1 (самое низкое разрешение), только один блок покрывает все изображение, которому соответствует средний уровень яркости g. При r = 2 мы имеем уже четыре блока размером со средними уровнями яркости g11, g12, g21, g22. На r-м уровне разрешения мы будем работать с блоками размером , которым соответствуют уровни яркости gij, ij=1…. Таким образом, к каждому блоку bij, принадлежащему изображению , приписывается уровень яркости gij, а соответствует изображению . Среднее искажение уровня яркости при разрешении r имеет вес 2r . Следовательно, ошибка на этом уровне имеет вид:

(1)

где 2r-1 - количество блоков по i или по j индексам. Если рассматривать всю совокупность из R уровней разрешения, тогда оценка искажения будет выражена через сумму всех уровней разрешения r = 1… R , т.е.

(2)

Величина R (количество уровней разрешения) определяется начальным разрешением исходного цифрового изображения. К примеру, для изображения размером 512*512 R примет значение равное 9. Общая оценка искажений в видеосигнале выглядит следующим образом:

(2)

Индекс качества изображения (Image Quality Index)

Данный алгоритм выглядит следующим образом. Пусть и есть исходное и обработанное изображения соответственно. Тогда индекс качества изображения вычисляется следующим образом:

(3)

где

(4)

(5)

(6)

(7)

(8)

Индекс Q принимает всевозможные значение на промежутке [-1, 1]. Наилучшее значение индекса качества достигается тогда и только тогда, если xi = yi для всех i = 1,2,…N и принимает значение равное единице. Наихудший вариант (-1) происходит когда yi =2x - xi. для всех i = 1,2,…N . Данный индекс качества рассматривает любые искажения как совокупность трех различных факторов: потеря корреляции, искажение яркости и искажение контрастности. Первая компонента - это коэффициент корреляции между x и y, принадлежащая промежутку [-1, 1]. Наилучшее значение достигается когда yi=axi + b для всех i = 1,2,…N, где a и b - константы и a >0. Даже если x и y находятся в линейной зависимости могут иметь место другие искажения, устанавливаемые во второй и третьей компонентах. Вторая компонента, принимающая значения на промежутке [0,1] определяет степень схожести яркостных составляющих двух изображений x и y. Она принимает значение равное 1 тогда и только тогда, если . А и рассматриваются как оценка разности контраста между x и y, та же принимающая значения на промежутке [0,1] и имеющая наилучший результат при .


Мера качества видео на основе дискретного косинусного преобразования (Video Quality Measurement (VQM))


Алгоритм VQM основывается на идее о том, что в большинстве случаев наблюдатель при оценке качества изображения менее внимателен к мелким деталям, в то время как его основное внимание концентрируется на крупных объектах. Следовательно, возможно представить высокочастотную временную и пространственную информацию с меньшей точностью, а потерей качества в таком случае можно пренебречь, поскольку человеческий глаз малочувствителен к искажениям на подобном уровне. По этой причине, вместо попиксельного яркостного сравнения двух изображений (оригинального и искаженного) в алгоритме осуществляется сравнение взвешенных частот на уровне человеческого восприятия.

Кроме того, по мнению автора, наибольшим приоритетом при оценке качества, обладают те части изображения, яркость которых наибольшая. Он основывается на предположении о том, что если часть изображения более яркая, то и искажения на ней должны оказаться более заметны человеческому глазу.

Этапы алгоритма:

1. Чтение блоков размером 8x8 из исходного и искаженного изображений.

2. Каждый блок подвергается дискретному косинусному преобразованию, в результате чего мы получаем 2 матрицы частотных DCT-коэффициентов размером 8x8.

3. Для каждого блока производится масштабирование частот в зависимости от его общей яркости. Результатом данного этапа являются две матрицы Local Contrast для блоков из исходного и искаженного изображений соответственно:

(9)

где DCT(i,j) – матрица размером 8x8, являющая результатом дискретного косинусного преобразования исходного блока, DC – это средняя яркость данного блока перед преобразованием, имеющая нулевую несущую частоту, т.е. DC = DCT(0,0).

4. Каждый блок подвергается делению на стандартную матрицу квантования, в результате получаем две матрицы, содержащие взвешенные частоты с учетом человеческого восприятия.

5. Вычисляем функцию пространственной контрастной чувствительности (Spatial Contrast Sensitivity Function, SCSF). Для этого берем абсолютное отклонение соответствующих элементов полученных матриц, вычисляем их сумму, добавляем ее к сумме уже просмотренных блоков, вычисляем максимальное отклонение соответствующих элементов матриц.

6. На последнем этапе производится вычисление качества видеосигнала:

(10)

где sum – это сумма всех абсолютных отклонений, max – максимальное из всех отклонений по всему кадру. Таким образом, вычисляется средняя ошибка по всему кадру. Кроме того, оценка качества изображения производится с учетом максимального отклонения по всему кадру, поскольку в алгоритме делается предположение о том, что одно крупное искажение в одной части изображения, отвлечет наше внимание от более мелких искажений в других частях кадра.


2 Модификация алгоритмов оценки качества изображения с применением предварительной обработки Графические линейные фильтры.


Над любым изображением можно производить различные преобразования, позволяющие изменять исходную картинку. Основной целью такого преобразования является усиление или уменьшение каких либо свойств исходного изображения. Наиболее простыми преобразованиями являются локальные преобразования, затрагивающие вместе с определенным пикселем лишь его непосредственную окрестность (это значит, изменить цвет пикселя в соответствии с цветом его ближайших соседей) с целью достижения некоторого эффекта. Такие преобразования называются фильтрами. С исходным изображением можно работать, как с обычной матрицей, выполняя над ним различные численные преобразования. Интенсивность каждого пикселя изображения - результат действия фильтра вычисляется с помощью воздействия фильтра на соответствующий пиксель исходного изображения и его окрестность.

Каждый линейный фильтр F можно представить в виде матрицы размером , где N и M - размеры (прямоугольной) окрестности по горизонтали и вертикали. Интенсивность пикселя исходного изображения с координатами (x, y) при воздействии такого фильтра вычисляется по формуле:

(11)

Рассмотрим простейший пример графического фильтра (таблица 2). Это фильтр 3x3, то есть область действия фильтра захватывает сам пиксель и его ближайших соседей.

Таблица 2. Простейший фильтр – размытие исходного изображения (blur)

Таким образом, чтобы преобразовать один пиксель в изображении, необходимо умножить значение его цвета на число в центре матрицы, которую содержит фильтр. Затем умножаем восемь значений цветов пикселей, окружающих центральный пиксель, на соответствующие им коэффициенты фильтра, суммируем все девять значений, и получаем в результате новое значение цвета центрального пикселя. Этот процесс повторяется для каждого пикселя в изображении, тем самым изображение, как принято говорить, фильтруется. Коэффициенты фильтра определяют результат процесса фильтрации. В данном примере результатом действия фильтра будет простое усреднение интенсивности пикселей в области 3x3. Это простейший фильтр, приводящий к размывке изображения (blur). Заметим, что сумма всех элементов матрицы равна 1, то есть общая интенсивность изображения сохраняется. Такое свойство фильтра является очень важным при последовательном многократном его применении. Это означает, что каждый пиксель поглотит что-то из цветов соседей, но полная яркость изображения останется неизменной.

Если же сумма коэффициентов больше чем 1, яркость увеличится; меньше 1 - яркость уменьшится.

Еще одной идеей является введение в фильтр отрицательных чисел, что, вообще говоря, приводит к действию, обратному размывке (sharpening), то есть, два первоначально близких цвета удаляются друг от друга.

Спектр применения графических фильтров очень велик, начиная с коррекции цифровых фотографий и заканчивая созданием специальных эффектов на исходных изображениях.


Предварительная обработка исходного и искаженного изображений.


Эффективный подход к получению оценки качества цифрового видеосигнала заключается в предварительной обработке исходного и закодированного изображения, после которой применяется один из уже известных алгоритмов оценки качества.

Данный алгоритм основан на предположении о том, что система визуального восприятия человека направлена на извлечение структурной информации из наблюдаемого изображения. Следовательно, измерение изменений структурной информации может оказаться неплохой оценкой визуально воспринимаемых искажений в обработанном изображении.

В целях извлечения структурной информации к исходному и полученному изображениям применить четыре линейных графических фильтра определения границ размером 5x5. Первый фильтр (таблица 1) призван определять вертикальные границы двух изображений, а второй (таблица 2) горизонтальные, два других фильтра (таблица 3 и таблица 4) призваны определять диагональные границы разной ориентации.


Таблица 1. Фильтр, определяющий вертикальные границы


0

0

0

0

0

1

0

0

0

-1

2

1

0

-1

-2

1

0

0

0

-1

0

0

0

0

0


Таблица 2. Фильтр, определяющий горизонтальные границы


0

1

2

1

0

0

0

1

0

0

0

0

0

0

0

0

0

-1

0

0

0

-1

-2

-1

0


Таблица 3. Фильтр, определяющий диагональные границы 1-го типа


2

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

-1

-1

0

0

0

-1

-2



Таблица 4. Фильтр, определяющий диагональные границы 2-го типа


0

0

0

-1

-2

0

0

0

-1

-1

0

0

0

0

0

1

1

0

0

0

2

1

0

0

0


Чтобы преобразовать один пиксель в изображении, необходимо умножить значение его цвета на число в центре фильтра. Затем необходимо умножить 24 значения цветов пикселей, окружающих центральный пиксель, на соответствующие им коэффициенты фильтра, просуммировать все 25 значений. В результате мы получаем новое значение цвета центрального пикселя. Этот процесс повторяется для каждого пикселя в изображении.

Следующим этапом является применение одного из алгоритмов оценки качества цифрового видеосигнала для четырех карт границ в отдельности, вертикальной, горизонтальной, и двух диагональных. Вычисление метрик для карт границ необходимо с целью определения масштаба искажений границ объектов на изображении, поскольку границы объектов являются главной составляющей структурной информации.

На третьем, заключительном этапе, с целью учета границ, ориентированных по четырем направлениям, результат усредняется по вертикальной, горизонтальной, и диагональным составляющим.


3 Критерии качества восстановления изображения


Для сравнения различных алгоритмов сжатия используются следующие объективные критерии качества.

1. Среднеквадратическая ошибка (mean square error) или средний квадрат ошибок

, (12)

2. Средняя абсолютная ошибка (mean absolute error)

(13)

3. Нормированная среднеквадратическая ошибка (normalized MSE)


(14)

4. Нормированная абсолютная ошибка (normalized absolute error)


(15)


5. Отношение сигнал/шум (signal to noise ratio)


(16)

Использование логарифмов сглаживает MSE и делает ее менее чувствительной к малым изменениям восстановляемого изображения.


6. Пиковое отношение сигнал/шум (peak signal to noise ratio)

На практике используется модификация меры MSE и называется PSNR (peak of signal-to-noise ratio). PSNR чаще других параметров применяется для оценки сходства между исходным и восстановленным изображениями.

По сравнению с MSE данная мера хороша тем, что исчисляется в логарифмической шкале по амплитуде (в децибелах). Это важно, так как глаз воспринимает сигнал также в логарифмической шкале по амплитуде и поэтому усиление амплитуды сигнала в два раза не означает для человека улучшения качества изображения во столько же раз.

, (17)

где b – число бит на значение пикселя изображения.

Одним из недостатков данной меры является высокая чувствительность к среднему отличию сигналов по амплитуде, что может привести к ошибочному результату, в случае, когда сигналы немного отличаются в среднем по амплитуде. Физиология зрения и психология восприятия изображения человека настолько сложны, что до сих пор не существует способа математического расчета степени визуальной схожести двух изображений.


7. Средняя разность (average difference)

(18)

8. Максимальная разность (maximum difference)

(19)

9. Структурное содержимое (structural content)

(20)



ЛИТЕРАТУРА


1. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи.- М.: Радио и связь, 2000.

2. Рабинер Л.Р., Шафер Р.В. Цифровая обработка речевых сигналов.-М.: Радио и связь, 2001.

3. Секунов Н.Ю. Обработка звука на PC.- СПб.: БХВ-Петербург, 2001.

5. Дж.Миано «Форматы и алгоритмы сжатия изображений в действии».- М.: 2003.

6. Нейрокомпьютеры в системах обработки изображений. – М.: Радиотехника, 2003.



1Авиация и космонавтика
2Архитектура и строительство
3Астрономия
 
4Безопасность жизнедеятельности
5Биология
 
6Военная кафедра, гражданская оборона
 
7География, экономическая география
8Геология и геодезия
9Государственное регулирование и налоги
 
10Естествознание
 
11Журналистика
 
12Законодательство и право
13Адвокатура
14Административное право
15Арбитражное процессуальное право
16Банковское право
17Государство и право
18Гражданское право и процесс
19Жилищное право
20Законодательство зарубежных стран
21Земельное право
22Конституционное право
23Конституционное право зарубежных стран
24Международное право
25Муниципальное право
26Налоговое право
27Римское право
28Семейное право
29Таможенное право
30Трудовое право
31Уголовное право и процесс
32Финансовое право
33Хозяйственное право
34Экологическое право
35Юриспруденция
36Иностранные языки
37Информатика, информационные технологии
38Базы данных
39Компьютерные сети
40Программирование
41Искусство и культура
42Краеведение
43Культурология
44Музыка
45История
46Биографии
47Историческая личность
 
48Литература
 
49Маркетинг и реклама
50Математика
51Медицина и здоровье
52Менеджмент
53Антикризисное управление
54Делопроизводство и документооборот
55Логистика
 
56Педагогика
57Политология
58Правоохранительные органы
59Криминалистика и криминология
60Прочее
61Психология
62Юридическая психология
 
63Радиоэлектроника
64Религия
 
65Сельское хозяйство и землепользование
66Социология
67Страхование
 
68Технологии
69Материаловедение
70Машиностроение
71Металлургия
72Транспорт
73Туризм
 
74Физика
75Физкультура и спорт
76Философия
 
77Химия
 
78Экология, охрана природы
79Экономика и финансы
80Анализ хозяйственной деятельности
81Банковское дело и кредитование
82Биржевое дело
83Бухгалтерский учет и аудит
84История экономических учений
85Международные отношения
86Предпринимательство, бизнес, микроэкономика
87Финансы
88Ценные бумаги и фондовый рынок
89Экономика предприятия
90Экономико-математическое моделирование
91Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Что же мы всё обо мне, да обо мне? Давайте о вас? Как я вам?
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по информатике и информационным технологиям "Критерии оценивания качества воспроизведения изображений", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2017
Рейтинг@Mail.ru