Реферат: Пространственное вращение - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Пространственное вращение

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 1253 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

Пространственное вращение Пространственное вращение – один из важнейших видов периоди ческого движения в стационарных квантовых системах. Напомним, что в классической механике наиболее рациональное описание такого дви жения достигается при использовании сферической системы координат, с которой мы и начнём свой анализ. Сферическая система координат 4.3.1.1. Сферическая система координат хорошо известна из географии и астрономии. Положение частица на сфере в этом случае определяется с помощью широты и долготы, которые задаются посредством двух углов и , отсчитываемых относительно фиксированных осей, например, декартовых, как это показано на рис. 4.2. Вводя рас стояние от центра вращения, переменный радиус r , получаем третью координату, необходимую для описания пространственного вращатель ного движения Шаровые координаты: Декартовы координаты: (4.28) Рис. 4.2. Сферическая система координат При описании переменных данной задачи обязательно следует указать пределы их изменения или или или 4.3.1.2. Вычисление элемента объема в сферической системе ко ординат проиллюстрируем рис. 4. 2. Величина dV понадобится нам в дальнейших расчётах. (4.2 9 ) 4.3.2. Преобразование оператора Лапласа 4.3.2.1. Лапласиан – основа выражения оператора кинетической энергии и, следовательно, гамильтониана . Поэтому проследим подробно всю схему его преобразования при замене декартовой системы координат на сферическую. С подобной , но более простой процеду рой мы уже имели дело при рассмотрении плоского ротатора. 4.3.2.2. В теории поля лапласиан является скалярным произве дением вектор-оператора Гамильтона "набла" самого на себя– скаляр ным "квадратом" : Поэтому вначале преобразуем оператор "набла" . (4. 30 ) В соответствии с (4.28) x,y,z выражаются как функции сфе рических координат , поэтому производные, составляющие оператор "набла", предстанут в следующем виде ( 4.3 1 ) 4.3.2.3. Наборы частных производных в (4.30) образуют квадрат ную матрицу коэффициентов, при умножении на которую происходит пе реход от одного базисного вектор-столбца к другому : ( 4.3 2 ) Вычислим все производные, являющиеся элементами квадратной матрицы, дифференцируя выражения (4.28) или (4.3 3 ) Напомним, что перемножение матриц подчиняется правилу "строка на столбец". В итоге элементы искомого вектор-столбца предстанут в виде суммы: (4.3 4 ) (4.3 5 ) (4.3 6 ) 4.3.2.4. Следующий этап преобразований – построение оператора Лапласа в переменных . (4.3 7 ) Для этого, согласно уравнению (4.35), необходимо перемножить сами на себя выражения операторов однократного дифференцирования по координатам х,у,z через сферические переменные (4.32)– (.4.34) и затем взять сумму этих произведений. При этом следует учитывать, что перемножаются не числа, а операторы, и действие оператора из левой скобки на каждое слагаемое правой выполняется по правилам, аналогичным правилам дифференцирования произведения функций, т.е. (4.3 8 ) 4.3.2.5. Ход преобразований продемонстрируем на примере одно го из слагаемых лапласиана, например при этом, для сохранения упорядоченного характера записи выпишем новые слагаемые, получающиеся в результате дифференцирования, в столбец под каждым преобразуемым выражением. Это в некотором роде изменение привычного математического синтаксиса, цель которого – порядок и наглядность в записи C уммируя, получаем . (4.37) 4.3.2.6 . Аналогично получаются другие слагаемые лапласиана. Результаты преобразований представлены в таблице 4.2. В её левом столбце перечислены слагаемые оператора Лапласа в декартовых координатах, а в верхней строчке – все операторы дифференцирования первого и второго порядков по всем сферическим переменным , включая перекрёстные, которые возникают в ходе преобразований. На пере сечении строк и столбцов указаны коэффициенты перед последними – функции от , которые получаются при преобразовании слагаемых лапласиана, стоящих в левом столбце. Самая нижняя строчка представляет суммы по столбцам. Домножая эти суммы справа на соответствующие операторы верхней строки и суммируя результаты, получаем окончательное искомое выражение оператора Лапласа в сферической систе ме координат: (4.38) 4.3.2.7. Сгруппируем некоторые из слагаемых в (4.38) для более компактной записи (4.39) , (4.40) В результате лапласиан приобретает вид (4.41) Таблица 4.2. Коэффициенты преобразования оператора Лапласа. 0 1 0 Табл. 4.2.1. Продолжение. 0 0 4.3.2.8. Отдельные фрагменты лапласиана, построенные на раз ных переменных, удобно обозначить самостоятельными символами. Для краткости переменные отметим в качестве индексов (4.42) (4.43) . (4.44) Вся чисто угловая часть лапласиана, заключенная в скобки в формуле (4.41) называется оператором Лежандра . (4.45) В целом же лапласиан оказывается такой комбинацией трёх операторов, которая обеспечивает далее разделение переменных во многих дифференциальных уравнениях, в том числе и в уравнении Шредингера, построенных на его основе: (4.46) 4.3.2.9. Напомним, что с оператором (4.44) составляющим самую внутреннюю часть конструкции и оператора Лапласа, и опе ратора Лежандра мы уже имели дело при рассмотрении одномерного вращения (раздел 3.2. ). Были найдены его собственные волновые функции, которые далее войдут в качестве одного из сомножителей общих собственных функций этих операторов. Присутствие радиального слагаемого в этом случае заставляет представить оператор кинетической энергии в виде суммы (4.50) 4.3.3.3 . В силу того, что оператор кинетической энергии частицы отличается от лапласиана только множителем (см. уравнение 2.15), домножив на него формулу (4.46), получим (4.51) Сравнивая формулы (4.50) и (4.51), приходим к фундаменталь ному соотношению , (4.52) т.е. оператор квадрата момента импульса совпадает с оператором Лежандра с точностью до постоянного множителя . Заметим, что размерность собственных значений оператора совпадает с размер ностью постоянной Планка . 4.3.3.4. Этот же результат можно получить и последовательными математическими преобразованиями компонент операторов и . Процедура перехода к сферическим координатам для компонент аналогична той, что была осуществлена в разделе 3.2.2. при перево де к плоской полярной системе координат. Кстати говоря, в сфери ческих координатах имеет тот же самый вид (3.24). Используя уравнения (4.52) и (4.34), читатель сам легко получит выражения (4.53) (4.54) (3.24) Суммируя результаты возведения в квадрат найденных выражений для операторов проекций момента импульса, получаем формулу (4.52), которая в развернутой форме с учетом (4.45) имеет вид (4.55)
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Вот, знаете, бывает у вас такое? Проснёшься, а настроение такое хорошее-хорошее, небо голубое, тепло, тебе приносят кофе в постель...
Вот и у меня не бывает.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по физике "Пространственное вращение", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru