Курсовая: Режим переконденсации с компактным распределением размеров капель - текст курсовой. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Курсовая

Режим переконденсации с компактным распределением размеров капель

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Курсовая работа
Язык курсовой: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 4226 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникальной курсовой работы

Узнайте стоимость написания уникальной работы

Описание проблемы и постановка задачи . Классические работы Дж.Гиббса, М.Фольмера, Ф.Беккера, В.Дёринга, Я.Френкеля, Я.Зельдовича по физике фазовых переходов I рода относятся к ранним стадиям зарождения новой фазы. В данной же работе нас интересует процесс конденсации, переходящий из флуктуационного режима роста зародышей новой фазы в стадию переконденсации , именуемую также коалесценци ей , или Оствальдовским созревани ем [ W.Z.Ostwald // Phys. Chem. 37 , 385 (1901) ], когда рост крупных капель происходит за счёт растворения более мелких (при условии, что все капли далеки друг от друга). Режим переконденсации может проходить в одном случае под управлением поглощающей способности поверхности (теория Вагнера: [ C.Z.Wagner // Electrochem. 65 , 581 (1961) ]), когда длина свободного пробега молекулы много больше радиуса капли , а в другом случае под управлением диффузии в паре (теория Лифшица-Слёзова: [ М . Лифшиц , В . Слёзов // ЖЭТФ 35 , 479 (1958) , M.Lifshitz, V.Slyozov // J.Phys.Chem.Solids 19 , 35 (1961) ]), когда . Причиной расхождения эксперимента с теорией Лифшица-Слёзова-Вагнера оказалось допущение неограниченного объёма кластеров новой фазы [ J. Alkemper, V.Snyder, N.Akaiwa, P.Voorhees // Phys.Rev.Lett. 82 , 2725 (1999) ]. Поэтому все дальнейшие теоретические исследования Оствальдовского созревания предполагают компактное основание распределения капель по размерам [ N.Akaiwa, P.Voorhees // Phys.Rev.B 49 , 3860 (1994) , D.Fan, S.Chen, L.Chen, P.Voorhees // ActaMaterialia 50 , 1895 (2002) , K.Wang, M.Gliksman, K.Rajan // Comput.Mat.Sci. 34 , 235 (2005) ] . Поэтому задачей данной работы является описание уравнений и параметров режима переконденсации в условиях существования максимального размера капли. Коалесценция имеет большое практическое значение, например, в образовании и стабильности поверхностей [ S.Kukushkin, A.Osipov // Progress in Surf. Sci. 51 , 1 (1996) , M.Zinke-Allmang, L.Feldman, M.Grabow // Surf. Sci.Rep. 16 , 377 (1992) , W. Bartelt, C.Theis, M.Tromp // Phys.Rev. B 54 , 11741 (1996) ] . Оглавление Описание проблемы и постановка задачи. 1 Оглавление 2 1). Переписывание уравнений в терминах максимальной капли. 3 2). Соотношения интегральных моментов функции распределения. 5 3). Нахождение автомодельной функции распределения. 6 4). Нормировка функции распределения. 9 5). Предельный случай – распределение Лифшица-Слёзова. 10 6). Графики. 11 7). Литература. 12 8) Ссылки 12 1). Переписывание уравнений в терминах максимальной капли . Оригинальные уравнения теории переконденсации записываются в терминах отношения безразмерного радиуса капли к её критическому радиусу в зависимости от безразмерного времени: . Наша задача – переписать их в терминах отношения радиуса капли к максимальному радиусу: . Уравнение роста радиуса капли в режиме коалесценции Лифшица-Слёзова : Тогда у равнение непрерывности для функции распределения по размер ам капель: Подставляем сюда асимптотический анзац Лифшица-Слёзова в новых переменных и с явной зависимостью от времени : Преобразуем дифференциальное уравнение ( обозначая ) : Введём Избавимся от , подставив в уравнение роста радиуса капли : С учётом этого, а также определения в , д окажем, что является корнем кубического полинома : Тогда окончательно запишется следующим уравнением на функцию распределения : Зная один корень, найдём делением по схеме Горнера квадратичное выражение в корень 1 -1 0 остаток -1 остаток = нулю Таким образом: Решим квадратное уравнение, полагая корни существующими : Т ем самым мы разложи ли на множители , где Каждая скобка в таком виде разложения, как мы увидим далее, будет положительна. Заметим также, что (так что ) , что, впрочем, сразу следует из теоремы Виета для по отсутствию квадратичного члена . Итак , уравнение запишется следующим образом: В этой работе мы рассмотрим автомодельную функцию , не зависящую явно от времени, при этом в полученном дифференциальном уравнении опускается член с частной производной по времени от функции распределения. 2). Соотношения интегральных моментов функции распределения. Соотношения между интегральными моментами функции распределения можно найти, не зная её явного вида. Для этого п роинтегрируем от 0 до 1 левую и правую части дифференциального уравнения , опуская член с производной по времени и вводя моменты: Интегрируем по частям левую часть: Это выражение , в сущности , означает, что , а если вспомнить отношение между максимальным и критическим радиусами капли, то получим равенство среднего и критического радиусов: , когда функция распределения нормирована на единицу (см. пункт 4 ) 3 ) . Нахождение автомодельной функции распределения . По-прежнему п олагая автомодельным и убирая в член с производной по времени, можно явно решить дифференциальное уравнение интегрированием: Для этого р азложим подынтегральное выражение на простейшие дроби и найдём коэффициенты : При : При : Приравнивание коэффициентов при : Приравнивание коэффициентов при (находим ) : Подставляя полученное выражение для , выразим только через и избав имся от иррациональности в знаменателе: Таким образом, найдены все коэффициенты в разложении на простые дроби подынтегрального выражения в , интегрируя их, получаем , помня об области определения переменных : В значениях (третий корень ) из окончательно запишем : Где в силу физической ограниченности функции распределения на конце интервала, полагаем: Оценим выражение для из : Дифференцированием и грубой оценкой можно увидеть, что монотонно убывает по из бесконечности , как и . При этом величина , фигурирующая в , остаётся ограниченной ( не имеет особенности при ) , более того почти постоянной в заданном интервале , в чём можно убедиться, вычитая в форме из и выражая всё через : 4). Нормировка функции распределения. Как в пункте 2 проинтегрируем от 0 до 1 левую и правую части (без члена с производной по времени) , предварительно разделив их на : Формально интегрируем по частям левую часть: Удовлетворяя условию нормировки, п одставим из . П ри сохранит ся только первый член: Так что функция распределения в нормированном виде равна : Из дифференциального уравнения легко выписать производную функции распределения: Приравняв её нулю и р ешая каноническое кубическое уравнение по формуле , имеем для максимума функции распределения , изменяющего своё положение с изменением : 5). Предельный случай – распределение Лифшица-Слёзова . Рассмотрим предельный случай при . При этом из , а из . Тогда как их разность , что было показано в . Нам также пригодится асимптотика: Приведём для сравнения функцию Лифшица-Слёзова, записанную в оригинальных переменных : 6 ) . Графики . Здесь нарисованы функции распределения из , охватывающие весь интервал возможных вплоть до функции Лифшица-Слёзова . Литература . 1. А.Н.Васильев, А.К.Казанский, Л.Ц.Аджемян: « Переконденсация пересыщенного пара: аналитические теории и численный эксперимент » . 2. П.Губанов, Ю.Желтов, И.Максимов, В.Морозов: « Кинетический кроссовер режимов коалесценции в пересыщенном однородном растворе ». 3. В.Бойко, Х.Могель, В.Сысоев, А.Чалый « Особенности метастабильных состояний при фазовых переходах жидкость-пар » 4. В.Ф.Разумов: « Курс лекций по синергетике ». 5. Е.М.Лифшиц, Л.П.П итаевский: « Физическая кинетика » . 6. B.Giron, B.Meerson, P.V.Sasorov: « Weak selection and stability of localized distributions in Ostwald ripening » . 7. V.M.Burlakov: « Ostwald Ripening on nanoscale » . 8. B.Niethammer, R.L.Pego: « Non-self-similar behavior in the LSW theory of Ostwald ripening » . Перечисленные и многие другие материалы по теме временами доступны по ftp здесь: ftp :// rodion . homeftp . net Work =Учёба= Кафедра статфизики =Курсовая= Литература Ссылки
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Запад отстал от нас в танкостроении на 20 лет, в лаптестроении на 50, в граблестроении на 100, в надувании щек - навсегда.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, курсовая по физике "Режим переконденсации с компактным распределением размеров капель", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru