Вход

Традиционные источники электрической энергии

Реферат* по физике
Дата добавления: 12 мая 2002
Язык реферата: Русский
Word, rtf, 1.5 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы
Оглавление. 1. Введение………………………………………………………..…….стр .2 2. Основн ая часть. 2.1. Тепловые электростанции…………………………………....стр .3 2.2. Гидроэлектрические электростанции……………………….стр .6 2.3. Атомные электростанции………………………………....стр .10 3.Заключение………………………………………………………….стр .15 Введение. Электр оэнергия – не только одно из чаще всего обсуждаемых сегодня понятий ; помимо своего основного физического (а в более широком смысле – естественнонаучного ) содержания , оно имеет многочисленные экономические , технические , политические и иные аспекты. Почему ж е электрификация так важна для раз вития экономики ? Научно-технический прогресс невозможен без развития энергетики , электрификации . Для повы шения производительности труда первостепенное значение имеет механизация и автоматизация про изводственных процессо в , замена человеческого тру да (особенно тяжелого или монотонного ) машин ным . Но подавляющее большинство технических средств механизации и автоматизации (оборудова ние , приборы , ЭВМ ) имеет электрическую основу . Особенно широкое применение электрическая эн е ргия получила для привода в действие электри ческих моторов . Мощность электрических машин (в зависимости от их назначения ) различна : от до лей ватта (микродвигатели , применяемые во многих отраслях техники и в бытовых изделиях ) до огром ных величин , превыш а ющих миллион киловатт (генераторы электростанций ). Человечеству электроэнергия нужна , причем потребности в ней увеличиваются с каждым годом . Вместе с тем запасы тради ционных природных топлив (нефти , угля , газа и др .) конечны . Конечны также и запасы ядерно го топлива - урана и тория , из которого можно получать в реакторах-размножителях плутоний . Поэтому важно на сегодняшний день найти выгодные источники электроэнергии , причем выгодные не только с точки зрения дешевизны топлива , но и с точки зрения простот ы конструкций , эксплуатации , дешевизны материалов , необходимых для постройки станции , долговечности станций. Данный реферат является кратким , обзором современного состояния энергоресурсов человечества . В работе рассмотрены традиционные источники электричес кой энергии . Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике , проанализовать наиболее выгодные в нынешнее время способы получения электроэнергии. К традиционным источникам , рассмотренным в моем ре ферате в пер вую очередь относятся : тепловая , атомная и энергия пока воды . Российская энергетика сегодня - это 600 тепловых , 100 гидравлических , 9 атомных электростанций , общая мощность которых по состоянию на октябрь 1999 го года составляет 210 млн квт . В 1998 году они выработали около 1 триллиона кВт /ч электроэнергии и 790 млн . Гкал тепла . Есть , конечно , несколько электростанций использующих в качестве первичного источника солнечную , ветровую , гидротермальную , приливную энергию , но доля производимой ими э нергии очень мала по сравнению с тепловыми , атомными и гидравлическими станциями. Тепловые электростанции. Тепловая электростанция (ТЭС ), электростанция , вырабатываю щая электрическую энергию в результате пре образования тепловой энергии , выделяю щейся при сжигании органического топлива . Первые ТЭС появились в кон . 19 в (в 1882 — в Нью-Йорке , 1883 — в Петер бурге , 1884 — в Берлине ) и получили преимущественное распространение . В сер . 70-х гг . 20 в . ТЭС — основной вид элек трической станций . Доля в ы рабатываемой ими электроэнергии составляла : в России и США св . 80% (1975), в мире около 76% (1973). Около 75% всей электроэнергии России производится на тепловых электростанциях . Большинство городов России снабжаются именно ТЭС . Часто в городах используют ся ТЭЦ - теплоэлектроцентрали , производящие не только электроэнергию , но и тепло в виде горячей воды . Такая система является довольно-таки непрактичной т.к . в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях , эффект и вность централизованного теплоснабжения сильно при передаче также понижается . Подсчитано , что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов ) установка электрического бойлера в дельно стоящем доме становится экономич е ски выгодна. На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую , а затем в электрическую. Топливом для такой электростанции могут служить уголь , торф , газ , горючие сланцы , мазут . Тепловые электрические стан ции подр азделяют на конденсационные (КЭС ), предназначенные для выработки только электрической энергии , и теплоэлектро централи (ТЭЦ ), производящие кроме электрической тепловую энергию в виде горячей воды и пара . Крупные КЭС районного значения получили название го с ударственных районных электро станций (ГРЭС ).. Простейшая принципиальная схема КЭС , работающей на угле , представлена на рис . Уголь подается в топливный бункер 1, а из него — в дробильную установку 2, где превраща ется в пыл ь . Угольная пыль поступает в топку парогенератора (парового котла ) 3, имеющего систему трубок , в которых цир кулирует химически очищенная вода , называемая питательной . В котле вода нагревается , испаряется , а образовавшийся насы щенный пар доводится до тем п ературы 400 — 650°С и под дав лением 3 — 24 МПа поступает по паропроводу в паровую турби ну 4. Параметры пара зависят от мощности агрегатов. Способ преобразования тепловой энергии в механическую в паровой турбине. Тепловые конденсацион ные электростанции име ют невысокий кпд (30 — 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добы чи топлива . При этом потребители электроэнергии могут находиться на значи тельном расстоянии от стан ции. Теплоэлектроцентраль отли чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара . На ТЭЦ одн а часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая , имеющая большую температуру и давление (на рис . штриховая ли ния ), отбирается от промежуточной ступени турбины и исполь зуется для теплоснабжения . Конденсат насосом 7 через деаэра тор 8 и далее питательным насосом 9 подается в парогенератор . Количество отбираемого пара зависит от потребности предприя тий в тепловой энергии. Коэффициент полезного действия ТЭЦ достигает 60 — 70 %. Такие станции строят обычно вблизи потребителей — про мышленных предприятий или жилых массивов . Чаще всего они работают на привозном топливе. Рассмотренные тепловые электростанции по виду основного теплового агрегата — п аровой турбины — относятся к паротур бинным станциям . Значительно меньшее распространение полу чили тепловые станции с газотурбинными (ГТУ ), парогазовы-ми (ПГУ ) и дизельными установками. Наиболее экономичными яв ляются крупные тепловые паро турбинные элект ростанции (сокра щенно ТЭС ). Большинство ТЭС нашей страны используют в ка честве топлива угольную пыль . Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам мов угля . В паровом котле свыше 90% выделяемой топливом энергии передается пару . В турбине кине тическая энергия струй пара пере дается ротору . Вал турбины жестко соединен с валом генератора . Современные паровые турбины для ТЭС — весьма совершенные , быстроходные , высокоэкономичные машины с большим ресурсом работы . Их мощность в однов альном исполнении достигает 1 млн . 200 тыс . кВт , и это не является пределом . Такие машины всегда бывают многоступенчатыми , т . е . имеют обыч но несколько десятков дисков с рабочими лопат ками и такое же Энергоблок мощностью 1 млн . 200 тыс . кВт Кос тромской ГРЭС. количество , перед каждым диском , групп сопел , через которые протекает струя пара . Давление и температура пара постепенно снижаются. Из курса физики из вестно , что КПД тепловых двига телей увеличивается с ростом на чальной температуры рабоч его тела . Поэтому поступающий в турбину пар доводят до высоких параметров : температуру — почти до 550 °С и давление — до 25 МПа . Коэффи циент полезного действия ТЭС дости гает 40%. Большая часть энергии теряется вместе с горячим отрабо танным паром. По мне нию ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах . Но струк тура ее изменится . Должно сократиться использование нефти . Су щественно возрастет производство электроэнергии на атомных элек т ростанциях . Начнется использование пока еще не тронутых гигантских запасов дешевых углей , например , в Кузнецком , Канс ко-Ачинском , Экиба cтузском бассейнах . Широко будет применяться природный газ , запасы которого в стране намного превосходят запасы в други х странах. К сожалению , запасы нефти , газа , угля отнюдь не бесконечны . Природе , чтобы создать эти запасы , потребовались миллионы лет , израсходованы они будут за сотни лет . Сегодня в мире стали всерьез задумываться над тем , как не допустить хищнического разг рабления земных богатств . Ведь лишь при этом условии запа сов топлива может хватить на века . К сожалению , многие нефте добывающие страны живут сегодняшним днем . Они нещадно расходу ют подаренные им природой нефтяные запасы . Сейчас многие из этих стран , ос о бенно в районе Персидского залива , буквально купаются в золоте , не задумываясь , что через несколько десятков лет эти запасы иссякнут . Что же произойдет тогда – , а это рано или поздно случится , – когда месторождения нефти и газа будут исчерпаны ? Происшедше е повышение цен на нефть , необходимую не только энергетике , но и транспорту , и химии , заставило заду маться о других видах топлива , пригодных для замены нефти и газа . Особенно призадумались тогда те страны , где нет собс твенных запасов нефти и газа и котор ы м приходится их покупать. Гидроэлектрическая станция. Гидроэлектрическая станция , гидроэлектростанция (ГЭС ), комплекс сооружений и оборудования , посредством которых энергия потока воды преобразуется в электрическую энергию . ГЭС состоит и з последовательной цепи гид ротехнических сооружений , обеспечи вающих необходимую концентрацию по тока воды и создание напора , и энергетического . оборудования , преобразующего энергию движущейся под напором воды в механическую энергию вращения которая , в свою очередь , преобразуется в электрическую энергию. Напор ГЭС создается концентрацией падения реки на используемом участке плотиной (рис 1), либо дерива цией , либо плотиной и дери вацией совместно (рис . 3). Основное энергет ическое оборудование ГЭС размещается в здании ГЭС : в машинном зале электростанции — гидроагрегаты , вспомогательное оборудование , устройства автоматического управления и контроля ; в центральном посту управления — пульт оператора-диспетчера или автоопера т ор гидро электростанции . Повышающая транс форматорная подстанция размещается как внутри здания ГЭС , так и в отдельных зда ниях или на открытых площадках . Рас пределительные устройства зачастую располагаются на открытой площадке . Здание ГЭС может быть разд е лено на секции с одним или несколькими агрегатами и вспомогательным оборудованием , отделённые от смежных частей здания . При здании ГЭС или внутри него создаётся монтаж ная площадка для сборки и ремонта раз личного оборудования и для вспомогательных операц и й по обслуживанию ГЭС. По установленной мощности (в .Мвт ) различают ГЭС мощные (св . 250), сред ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора На (разности уровней верхнего и нижнего бьефа ), расхода воды , исполь зуемого в гидротурбинах , и кпд гидроагрегата . По ряду причин (вследствие , например сезонных изменений уровня воды в во доёмах , непостоянства нагрузки энерго системы , ремонта гидроагрегатов или гидротехнических сооружений и т . п .) напор и расход воды непр е рывно меняются , а кроме того , меняется расход при регули ровании мощности ГЭС . Различают го дичный , недельный и суточный циклы режима работы ГЭС. По максимально используемому напо ру ГЭС делятся на высоконапорные (более 60 м ), средненапорные (от 25 до 60 м ) и низконапорные (от 3 до 25 м ). На равнинных реках напоры редко пре вышают 100 м , в горных условиях посредством плотины можно создавать напоры до 300 м и более , а с помощью дерива ции — до 1500 м . Классификация по напору приблизительно соответствует ти пам применяемого энергетического оборудова ния : на высоконапорных ГЭС применяют ковшовые и радиально-осевые турби ны с металлическими спиральными камера ми ; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическ и ми спираль ными камерами , на низконапорных — поворотнолопастные турбины в железо бетонных спиральных камерах , иногда горизонтальные турбины в капсулах или в открытых камерах . Подразделение ГЭС по используемому напору имеет при близительный , условный харак т ер. По схеме использования водных ре сурсов и концентрации напоров ГЭС обыч но подразделяют на русловые , приплотинные , деривационные с напорной и без напорной деривацией , смешанные , гидроаккумулирующие и приливные . В русло вых и приплотинных ГЭС напор воды создаётся плотиной , пе регораживающей реку и поднимающей уровень воды в верхнем бьефе . При этом неизбежно некоторое затопление долины реки . В случае сооружения двух плотин на том же участке реки площадь затопле ния уменьш а ется . На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высо ту плотины . Русловые и приплотинныс ГЭС строят и на равнинных многоводных реках и на горных реках , в узких сжатых долинах. В состав сооружений русловой ГЭС , кр оме плотины , входят здание ГЭС и во досбросные сооружения (рис . 4). Состав гидротехнических сооружений зависит от вы соты напора и установленной мощности . У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолже нием плотины и вместе с н е й создаёт напорный фронт . При этом с одной сто роны к зданию ГЭС примыкает верхний бьеф , а с другой — нижний бьеф . Под водящие спиральные камеры гидротурбин своими входными сечениями заклады ваются под уровнем верхнего бьефа , выходные же сечения отсасываю щ их труб погружены под уровнем нижнего бьефа. В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник , рыбопро пускные сооружения , водозаборные соо ружения для ирригации и водоснабже ния . В русловых ГЭС иногда ед инственным сооружением , пропускающим воду , является здание ГЭС . В этих случаях по лезно используемая вода последовательно проходит входное сечение с мусорозадер-живающими решётками , спиральную ка- меру , гидротурбину , отсасывающую тру бу , а по спец . водовод ам между сосед ними турбинными камерами произво дится сброс паводковых расходов реки . Для русловых ГЭС характерны напоры до 30 — 40 м к простейшим русловым ГЭС относятся также ранее строившиеся сель ские ГЭС небольшой мощности . На круп ных равнинных реках о сновное русло пере крывается земляной плотиной , к которой примыкает бетонная водосливная пло тина и сооружается здание ГЭС . Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках . Волж ская ГЭС им . 22-го съезда КПСС— наиболее кру п ная среди станций русло вого типа. При более высоких напорах оказывает ся нецелесообразным передавать на зда ние ГЭС гидростатичное давление воды . В этом случае применяется тип плотиной ГЭС , у которой напорный фронт на всём протяжении перекрывается плотино й , а здание ГЭС располагается за пло тиной , примыкает к нижнему бьефу (рис . 5). В состав гидравлической трассы меж ду верхним и нижним бьефом ГЭС тако го типа входят глубинный водоприёмник с мусорозадерживающей решёткой , тур бинный водовод , спиральная кам е ра , гидротурбина , отсасывающая труба . В качестве дополнит , сооружений в состав узла могут входить судоходные сооруже ния и рыбоходы , а также дополнительные водо сбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара. К началу Великой Отечеств , войны 1941 — 45 было введено в эксплуатацию 37 ГЭС общей мощностью более 1500 Мвт . Во время войны было приостановлено на чатое строительство ряда ГЭС общей мощ ностью около 1000 Мвт (1 млн . квт ). В 60-х гг . наметилась тенденция к с ни жению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пико вых нагрузок . К 1970 всеми ГЭС мира производилось около 1000 млрд . квт-ч электроэнергии в год , причём начиная с 1960 доля ГЭС в мировом произв о дстве сни жалась в среднем за год примерно на 0,7% . Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся “гидроэнер гетическими” странах (Швейцария , Ав стрия , Финляндия , Япония , Канада , от части Франция ), т . к . их экономический гидроэнергетический потенциал практи чески исчерпан. Несмотря на снижение доли ГЭС в общей выработке , абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строитель ства новых крупных электроста нций . В 1969 в мире насчитывалось свыше 50 дей ствующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше , причём 16 из них — на территории бывшего Советского Союза. Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическ ими ресурсами — их непрерывная возобновляемость . Отсутствие потребности в топливе для ГЭС определяет низ кую себестоимость вырабатываемой на ГЭС электроэнергии . Поэтому сооруже нию ГЭС , несмотря на значительные , удельные капиталовложения на 1 квт установл е н ной мощности и продолжительные сроки строи тельства , придавалось и придаётся боль шое значение , особенно когда это связано с размещением электроёмких производств . Атомные электростанции. атомная электростанция (АЭС ), электростанция , в которой атомная (ядер ная ) энергия преобразуется в элект рическую . Генератором энергии на АЭС является атомный реактор . Тепло , которое выделя ется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов , затем так же , как и на обыч ных тепловых электростанциях (ТЭС ), преобразуется в электроэнергию , В отли чие от ТЭС , работающих на органическом топливе , АЭС работает на ядерном горю чем (в основе 233 U , 235 U , 239 Pu ) При делении 1 г изотопов урана или плутония высво бождается 22 500 квт • ч , что эквивалентно энергии , содержащейся в 2800 кг услов ного топлива . Установлено , что мировые энергетические ресурсы ядерного горючего (уран , плутоний и др .) существенно превышают энергоресурсы природных запасов органического , т оплива (нефть , уголь , природный газ и др .). Это открывает широкие перспективы для удовлетворе ния быстро растущих потребностей в топ ливе . Кроме того , необходимо учиты вать всё увеличивающийся объём потреб ления угля и нефти для технологических целей миро в ой химической промышленности , которая становится серьёзным конкурентом тепло вых электростанций . Несмотря на откры тие новых месторождений органического топ лива и совершенствование способов его добычи , в мире наблюдается тенденция к относительному , увели ч ению его стоимости . Это создаёт наиболее тяжёлые условия для стран , имеющих ограниченные запасы топлива органического происхождения . Очевидна необходимость быстрейшего развития атомной энергетики , края уже занимает заметное место в энергетическом балансе р яда промышленных стран мира. Первая в мире АЭС опытно-промышленного на значения (рис . 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г . в г . Обнинске . До этого энергия атомного ядра использовалась в военных це лях . Пуск первой АЭС ознаменовал от крыти е нового направления в энергети ке , получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энер гии (август 1955, Женева ). В 1958 была введена в эксплуатацию 1-я очередь С ибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт ). В том же году развернулось строительство Белоярской АЭС , а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт ) выдал ток в Свердловскую энергосистему , 2-й блок мощностью 200 Мвт сдан в эксплуата цию в октябре 1967. Отличительная особенность Белоярской АЭС — перегрев пара (до получения нужных параметров ) непосредственно в ядерном реакторе , что позволило применить на ней обычные современные турбины почти без всяких переделок. Принц ипиальная схема АЭС с ядерным реактором , имеющим водяное охлаждение , приведена на рис . 2. Тепло , выделяется в активной зоне реактора , теплоносителем вбирается водой (теплоносителем ) 1-г контура , которая прокачивается через реактор циркуляционным насосом г Нагретая вода из реактора поступав в теплообменник (парогенератор ) 3, где передаёт тепло , полученное в реакторе воде 2-го контура . Вода 2-го контура испаряется в парогенераторе , и образуется пар поступает в турбину 4. Наиболее часто на АЭС применяют 4 т ипа реакторов на тепловых нейтронах 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя ; 2) графито-водные с водяным теплоносителем и графитовым замедлителем ; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлите л я 4) графито-газовые с газовым теплоноси телем и графитовым замедлителем. Выбор преимущественно применяемого типа реактора определяется главным образом на копленным опытом в реактороносителе а также наличием необходимого промышленного оборуд ования , сырьевых запасов и т . л . В России строят главным образом графито-водные и водо-водяные реакторы . На АЭС США наибольшее распространение получили водо-водяные реакторы . Графито-газо вые реакторы применяются в Англии . В атомной энергетике Канады прео б ла дают АЭС с тяжеловодными реакторами. В зависимости от вида и агрегатного со стояния теплоносителя создается тот или иной термодинамический цикл АЭС . Выбор верх ней температурной границы термодинамического цикла определяе тся максимально допусти мой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ ), содержащих ядерное го рючее , допустимой темп-рой собственно ядер ного горючего , а также свойствами теплоноси теля , принятого для данного типа реактора . На АЭС . тепловой реакто р которой охлаждает ся водой , обычно пользуются низкотемпера турными паровыми циклами . Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными дав лением и темп-рой . Тепловая схема А Э С в этих двух случаях выполняется 2-контурной : в 1-м контуре циркулирует теплоноситель , 2-й контур — пароводяной . При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одно контурная тепловая АЭС . В кипящих реак торах в о да кипит в активной зоне , полученная пароводяная смесь сепарируется , и насыщенный пар направляется или непосредственно в турбину , или предварительно возвращается в активную зону для перегрева. (рис . 3). В высокотемпературных графито-газовых реакторах возм ожно применение обычного газотурбинного цикла . Реактор в этом случае выполняет роль камеры сго рания. При работе реактора концентрация де лящихся изотопов в ядерном топливе постепенно уменьшается , и топливо выгорает . Поэтому со временем их заме няют свеж ими . Ядерное горючее пере загружают с помощью механизмов и при способлений с дистанционным управлением . Отработавшее топливо переносят в бас сейн выдержки , а затем направляют на переработку. К реактору и обслуживающим его си стемам относятся : собственно ре актор с биологической защитой , теплообменни ки , насосы или газодувные установки , осуществляющие циркуляцию теплоноси теля ; трубопроводы и арматура циркуляции контура ; устройства для перезагруз ки ядерного горючего ; системы спец . вентиляции , аварийного рас х олаживания и др. В зависимости от конструктивного ис полнения реакторы имеют отличит , осо бенности : в корпусных реакторах топливо и замедлитель расположены внутри корпу са , несущего полное давление теплоно сителя ; в канальных реакторах топливо , охлаждаемые теплоносителем , устанавли ваются в спец . трубах-каналах , пронизы вающих замедлитель , заключённый в тонкостенный кожух . Такие реакторы применяются в России (Сибирская , Белоярская АЭС и др .), Для предохранения персонала АЭС от радиационного облучения реакт ор окружают биологической защитой , основным материалом для которой служат бетон , вода , серпантиновый песок . Оборудование реакторного контура должно быть полностью герме тичным . Предусматривается система конт роля мест возможной утечки теплоноси теля , прин и мают меры , чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю щей местности . Оборудование реакторно го контура обычно устанавливают в герметичных боксах , которые отделены от осталь н ых помещений АЭС биологической защитой и при работе реактора не обслу живаются , Радиоактивный воздух и не большое количество паров теплоносителя , обусловленное наличием протечек из контура , удаляют из необслуживаемых помещений АЭС спец . системой вентиляци и , в которой для исключения возможно сти загрязнения атмосферы предусмот рены очистные фильтры и газгольдеры выдержки . За выполнением правил ра диационной безопасности персоналом АЭС сле дит служба дозиметрического контроля. При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд ) глушение ядер ной реакции ; аварийная система расхо лаживания имеет автономные источники питания. Наличие биологической за щиты , систем спец . вентиляции и аварийного расхо лаживания и службы дозиметрического контро ля позволяет полностью обезопасить обслуживающий персонал АЭС от вред ных воздействий радиоактивного облу чения. Оборудование машинного зала АЭС аналогично оборудов анию машинного зала ТЭС . Отличит , особенность боль шинства АЭС — использование пара сравнительно низких параметров , на сыщенного или слабо перегретого. При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару , в турбине устанавливают сепари рующие устройства . Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара . В связи с тем что теплоноситель и со держащиеся в нём примеси при прохож дении через активную зону реактора активируются , конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины од ноконтурных АЭС должно полностью исключать возможность утечки теплоно сителя . На двухконтурных АЭС с высо кими параметрами пара под о бные требо вания к оборудованию машинного зала не предъявляются. В число специфичных требований к компоновке оборудования АЭС входят : минимально возможная протяжённость коммуникаций , связанных с радиоак тивными средами , повышенная жёст кость фундаментов и несущих конст рукций реактора , надёжная организа ция вентиляции помещений . показан раз рез главного корпуса Белоярской АЭС с канальным графито-водным реакто ром . В реакторном зале размещены : реактор с биологической защитой , запасные ТВЭЛы и аппаратура ко н троля . АЭС скомпонована по блочному принципу реактор— турбина . В машинном зале рас положены турбогенераторы и обслужи вающие их системы . Между машинным II реакторным залами размещены вспомогательные оборудование и системы управле ния станцией. Экономичность АЭС определяется её основным техническим показателями : единичная мощность реактора , энергонапря жённость активной зоны , глубина вы горания ядерного горючего , коэффецента ис пользования установленной мощности АЭС за год . С ростом мощности АЭС удельные к апиталовложения в псе (стои мость установленного кет ) снижаются более резко , чем это имеет место для ТЭС . В этом главная причина стремле ния к сооружению крупных АЭС с большой единичной мощностью блоков . Для экономики АЭС характерно , что доля топливной со с тавляющей в себестоимости вырабатываемой электроэнергии 30 - 40% (на ТЭС 60 — 70%). Поэтому круп ные АЭС наиболее распространены в промышленно развитых районах с огра ниченными запасами обычного топлива , а АЭС небольшой мощности — в трудно доступн ы х или отдалённых районах , напр . АЭС в пос . Билибино (Якутия ) с электрической мощностью типового блока 12 Мет . Часть тепловой мощности реактора этой АЭС (29 Мет ) расходуется на теплоснабжение . Наряду с выработ кой электроэнергии АЭС используются так ж е для опреснения морской воды . Так , Шевченковская АЭС (Казахстан ) электрической мощностью 150 Мвт рассчи тана на опреснение (методом дистилля ции ) за сутки до 150 000 т воды из Кас пийского м. В большинстве промышленно развитых стран (Россия , США , Англия , Фран ция , Канада , ФРГ , Япония , ГДР и др .) мощность действующих и строящихся АЭС к 1980 доведена до десятков Гвт . По данным Международного атомного агентства ООН , опубликован ным в 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 Гвт. На 3-й Международной научно-технической конференции по мирному использова нию атомной энергии (1964, Женева ) было отмечено , что широкое освоение ядерной энергии стало ключевой пробле мой для большинства стран . Состояв шаяся в Москве в августе 1968 7-я Мир о вая энергетическим конференция (МИРЭК-УП ) подтвердила актуальность проблем выбо ра направления развития ядерной энер гетики на следующем этапе (условно 1980 — 2000), когда АЭС станет одним из оси . производителей электроэнергии. Из 1 кг урана можно получить с только же теплоты , сколь ко при сжигании примерно 3000 т каменного угля. За годы , прошедшие со времени пуска в эксплуатацию пер вой АЭС , было создано несколько конструкций ядерных реак торов , на основе которых началось широкое развитие атомной энергетики в нашей стране. Персонал 9 российских АЭС составляет 40.6 тыс . человек или 4% от общего числа населения занятого в энергетике . 11.8% или 119.6 млрд . Квч . всей электроэнергии , произведенной в России выработано на АЭС . Только на АЭС рост производства электро энергии сохранился : в 2000 году планируется произвести 118% от объема 1999 года. АЭС , являющиеся наиболее современным видом электростанций имеют ряд существенных преимуществ перед другими видами электростанций : при нормальных условиях функционирования о ни обсолютно не загрязняют окружающую среду , не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде , новые энергоблоки имеют мощность практичеки равную мощности средней ГЭС , однако коэффициэнт использования установле н ной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС . Об экономичности и эффективности атомных электростанций может говорить тот факт , что из 1 кг урана можно получить столько же теплоты , сколь ко при сжигании примерно 3000 т ка м енного угля. Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют . Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах :землетрясениях , ураганах , и т . п . - здесь старые модели энергобло ков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора. Заключение. Учитывая результаты существующих прогнозов по истощению к середине – концу следующего столе тия запасов нефти , природного газа и других традиционных энергоресурсов , а также сокращение потребления угля (которо го , по расчетам , должно хватить на 300 лет ) из-за вредных выбро сов в атмосферу , а также употребления ядерного топлива , которого при условии интенсивно го развития реакторов-раз множителей хватит не менее чем на 1000 лет можно считать , что на данном этапе развития науки и техники тепловые , атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии . Уже началось дорожание нефти , поэтому тепловые электростанции на этом топливе будут вытеснены станциями на угле . Некоторые ученые и экологи в конце 1990-х гг . говорили о скором запрещении государствами Западной Европы атомных электростанции . Но исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии , эти утверждения выглядят неуместными. Литература. 1. Баланчевадзе В . И ., Барановский А . И . и др .; Под ред . А . Ф . Дьякова . Энергетика сегодня и з автра . – М .: Энергоатомиздат , 1990. – 344 с. 2. Более чем достаточно . Оптимистический взгляд на будущее энергетики мира / Под ред . Р . Кларка : Пер . с англ . – М .: Энергоатомиздат , 1994. – 215 с. 3. Источники энергии . Факты , проблемы , решения . – М .: Наука и техника , 1997. – 110 с. 4. Кириллин В . А . Энергетика . Главные проблемы : В вопросах и ответах . – М .: Знание , 1997. – 128 с. 5. Мировая энергетика : прогноз развития до 2020 г ./ Пер . с англ . под ред . Ю . Н . Старшикова . – М .: Энергия , 1990. – 256 с. 6. Нетра диционные источники энергии . – М .: Знание , 1982. – 120 с. 7. Подгорный А . Н . Водородная энергетика . – М .: Наука , 1988. – 96 с. 8. Энергетические ресурсы мира / Под ред . П.С.Непорожнего , В.И . Попкова . – М .: Энергоатомиздат , 1995. – 232 с. 9. Юдасин Л . С .. Энергетика : проблемы и надежды . – М .: Просвещение , 1990. – 207с.
© Рефератбанк, 2002 - 2024