Реферат: Сплавы магнитных переходных металлов - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Сплавы магнитных переходных металлов

Банк рефератов / Физика

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 669 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата

Узнайте стоимость написания уникальной работы

Сплавы магнитных переходных металлов В последние годы интенсивно изу чали электронную структуру и разнообразие физических свойств сплавов переходных металл ов . Для изучения магнитных свойств сплавов переходных металлов очень полезным оказался метод рассеяния медленных нейтронов . Исследован ие упругого и неупругого рассеяния м едленных нейтронов в сплавах позволяет получить уникальную информацию о магнитных моментах и форм-факторах , а также об изм енении спин-волновой жесткости. Небходимо отметить , что нейтронные исслед ования распределения магнитного момента в маг нитных сплавах и изменение спин-волновой жесткости во многом стимулировали развитие современных методов расчета электронной структ уры неупорядоченных сплавов , которые чрезвычайно полезны для решения многих задач физики твердого тела . К ним относят широко т еперь известный метод когерентного по тенциала [160]. Модель Хаббарда окозалась очень полезной для описания многих электронных и ных свойств сплавов переходных металлов и успешно применяется в большом количестве р абот . При описании неупорядоченных сплавов с помощью м одели Хаббарда вводятся слу чайные параметры , поэтому говорят о модели Хаббарда со случайными параметрами . Перейдем к ее описанию . Предполагается , что взаимодействие электронов в бинарном н еупорядоченном сплаве из двух магнитных компо нент описывается следу ющим модельным гами льтонианом : (69) Здесь , как и в (11), , - операторы уничтожения и рождения электронов Ванье в узле i со спином . Считается , что интеграл ы перескока одинаковы для обоих сортов атомов А и В , т.е . ; зонная структура чистых компонен т А и В в отс утствие кулоновского взаимодействия одинаковая . В еличины и - одночастичный по тенциал и внутриатомное кулоновское взаимодейств ие соответственно : (70) Для неупорядоченног о сплава величины и принимают случай ные значения в зависимости от того , заполн ен ли узел атомом А или В. Гамильтониан (69 ) исследовали многие авт оры в различных предельных случаях . Если п редположим , что какая-либо из компонент сплава (например , В ) состоит из немагнитных атомо в , то можно положить параметр . Этот случай соответствует модели Вольфа [161, 162]. Если положим в (69), получим м одельный гамильтониан , который рядом авторов [16 3, 164] был использован для теоретического о писания сплава Pd - Ni . Случай , ко гда , рассмотрен Лютер ом и Фульде [165] для анализа рассеяния парам агнонов на прим есях ; Ямада и Шимицу [166] рассчитали спин-волновой спектр . Мория 167] детал ьно исследовал электронную структуру вблизи м агнитной примеси ( ) в немагнитной ма трице ( ) и рассчитал целый ряд физических характеристик примесной системы . Взаимодействие между примесями было рассмотрено в [168]. Все упомянутые работы [161- 168] ограничены приближением сильно разбавленного сплава . Метод когерентного потенциала [160] позволяет рассматривать сплав с конечной концентрацией примесей . Можно выделить два направления ра бот , использующих метод когерентного потенциала для описания не упорядоченных сплавов. Начало первому направлению положила работ а [169]. В ней была дана теоретическая интерпр етация зависимости от концентрации средней на магниченности , атомных моментов компонент и э лектронной теплоемкости для сплава Ni c Fe 1- c . К этому нап равлени ю примыкают работы [170-174]. Подход Хасегава и Канамори (ХК ) основа н на использовании приближения Хартри-Фока дл я описания внутриатомной кулоновской корреляции . В этом случае гамильтониан (69) записывался в следующем виде [169]: (71) где (71а ) таким образом , н еупорядоченность , описываемая в рамках приближе ния когерентного потенциала , характеризуется двумя параметрами и . Средние числа заполнения в (71а ), которые различаются для разных компонент сплава ( или , i A , или В ), должно определяться самосогласо ванным образом . Последнее обстоятельство приводит к тому , что не каждая элементарная ячейка является э лектрононейтральной и может иметь место перен ос конечного заряда. Для одночастичного гамильтониана (71) применима стандартная схема метода когерентного по тенциала , которую здесь опишем , следуя обозначениям работы [160]. В методе когерентного п отенциала (СРА ) рассматривается одноэлектронный га мильтониан следующего вида : (72) Здесь W – периодическая часть ; D – сумма случайных вкладов , каждый из кото рых связан с одним узлом . Одноэлектронные свойства сплава вычисляются как средние по ансамблю по всем возможным конфигурациям а томов в решетке . Обычно рассматривают уср едненную подобным образом одноэлектронную функцию Грина G ( z ): (73) Определим Т-матрицу для данной конфигурации сплава с помощью уравнения (74) Тогда функционально е уравнение для определения неизвестного опер атора будет задаваться условием (75) Уравнение (75) является самосогласованным определением оператора . Полагая , что (76) можно ввести ло кальный оператор рассеяния (77) С помощью опера тора T n эффективная среда , характеризуемая оператором , заменяется рассеянием на реальном атом е в данном узле n . В методе когерентного потенциала общее условие самосогласования (75) заменяется его одноузельным приближением (78) таким образом , п ри этом подходе примесь считается находящейся в эффективной среде , функция Грина которо й подбирается так , чтобы Т-матрица рассеяния на примеси в среднем была равна нулю . При этом будем пренебрегать рассеянием па рами атомов и более крупными кластера ми . Метод когерентного потенциала точен в атомном пределе , когда перескоки электронов с узла на узел очень маловероятны . Сравнени е приближений виртуального кристалла , средней Т-матрицы и когерентного потенциала , провед е нное в [175], показало , что метод когерентного потенциала не хуже аппроксимации виртуального кристалла. В методе когерентного потенциала усреднен ная функция Грина неупорядоченной системы < G ( E )> получается из функции Грина для идеальной решетки заменой энер гии на комплексную величину . Аналитически е свойства величин , вычисляемых в одноузельно м приближении когерентного потенциала , нетривиаль ны ; функция Грина < G ( z )> а налитична всюду , кроме линий разрезов , соответ ствующих примесной зоне и зоне основного кристалл а . Существенно , что в методе когерентного потенциала эффект рассеяния электронов вследст вие неупорядоченности описывается комплексной ве личиной , а именно когерентным потенциалом . С точки зрения квантовой механики в этом нет ничего необычного . Напомним , чт о п ри многократном рассеянии волны на произвольн ом ансамбле рассеивателей вводится усредненная по ансамблю волновая функция , а потенциал в уравнении Шредингера становится комплексным [176]. Мнимая часть потенциала описывает поглощен ие вследствие рассеяни я . Основная характеристика спектра возбуждений системы есть плотность состояний на един ицу энергии D ( ). Она определяется мнимой частью функции Грина < G ( z )>= G CPA . На основе одночастичной плотности состояний с помощью метода ко герентного потенциала можно хорошо описать поведение параметра асферичности для сплавов Ni , Fe и Co [177]. Параметр асферичности является в ажной характеристикой , экспериментально измеряемой с помощью рассеяния медленных нейт роно в и определяется следующим соотношением : g / (79) где eg - магнитный элемент , определ яе мый электронами в состояниях e g - типа , - полный спиновый магнитный момент. Эксперименты по рассеянию нейтронов показ ывают , что измеряемые значения в зависимости от очень точно укладываются на прямую линию практически д ля всех сплавов Ni , Fe и Co . Т . е . = а + b (80) Только для чист ого Ni это не выполняется ; Ni значит ельно меньше величины , следующей из (80). Возможной причиной такого отклонения для чистого Ni может быть либо влияние корреляции электронов , либо спец ифика одно-частичного поведения системы . В [177] бы ли рассмотрены только одно-частичные свойства системы в подходе Хасегава и Канамори (71) и показано , что для расчета параметра асферичности влияние корреляции не очень суще ственно . Как и в [169], рассматривалась область концентраций сплава при 0 ≤ с ≤ 0,5. Хасегава и Канамори с помощью метода когерентного потенциала вычислили магнитный момент и локальные моменты ( Ni ) и ( Fe ). Их результаты хорошо согласуются с экспериментом . Однако , надо заметить , чт о они использовали не реальную плотность состояний , а сильно идеализированн ую функ цию и проблема решалась с использованием многих свободных параметров. В [177] впервые была использована реальная теоретическая плотность состояний [51, 178] для расче та параметра асферичности Для точного расчета необходимо было отдельно учесть e g - и t 2 g – состояния . Получить такие раздельные плотности весьма сложно из-за сильной гибридизации этих сост ояний . В [177] использовано то обстоятельство , что в точках и на линиях высокой симме трии , где гибридизация отсутствует , волнов ые функции можно отождествить с e g - и t 2 g – состояниями . Предполагалось , что количественно поведение волновых функций не сильно измен яется при переходе к другим точкам . Исполь зуемая теоретическая плотность состояни й состоит из шести подзон , две из них св язаны с s -эл ектронами , а остальные четыре имеют в указ анных точках и на линиях высокой симметри и поведение плотности состояний электронов в t 2 g и e g -состояниях . Поэтому можно предположить пр иближённое разделение плот ности состояний на составляющие для t 2 g и e g - – электронов . В методе когерентного потенциала , выражен ие для плотности состояний в сплаве имеет вид [177] ( е ) = - Im ( е ), (81) где = ; (82) У i – когерентный потенциал , определяемый из уравнения У i = х Д + У i (Д - У i ) (е ) (83) Д о писывает сдвиг между атомными ур овнями Fe b Ni . В [169] это т параметр очень сильно зависит от спина ( Д /Д =5,6) и от кон центрации . В [177], напротив , предполагалось , чт о Д практически не зависит от этих величин , чтобы после довательно провести учёт одно-частичных свойств модели . Решение задачи удаётся провести без использования свободных параметров . Были выч ислены плотность состояний (е ) и локальные плотности и для i = t 2 g и различных концентраций . Получ енный на основе этих результатов для пара метр асферичности г показан на рис . 11. согласие с экперим ентом хорошее. Интересно отмет ить , что результаты для вычисленных Эл ьком значений м , м ( Ni ) и м ( Fe ) оказываются хуже , чем в работе Хасегава и Канамори . Возможной пр ичиной этого может быть влияние корреляций на значение м , для описания которой в [169] использовали допо лнительные свобод ные параметры . В то ж е время , как видно на рисунке 11 поведение параметра асферичности хорошо объясняется уже на основе одно-частичной плотности состояний оптимально приближённой к реальной . Дальнейш ее обсуждение подхода Хасагава – Канамори дан о в [179]. Д ругое направление описания неупорядо ченных сплавов с помощью гамильтониана (69) разв ивалось в [180-181]; конкретно [180] рассматривался сплав Pd - Ni . Подробно проанализировал различие этих двух подходов Фукуяма . [162, 174]. Он показал , что в подходе Харрис а-Цукермана [180] основное внимание сосредотачивается на дин амических эффектах кулоновского взаимодействия , а пространственным изменением потенциала пренебре гается . Поэтому такие одно-частичные величины , как локальная плотность состояний , являются п ростр а нственно однородными , за исключ ением возможного существования виртуально связан ных состояний . Схема является самосогласованной , если имеет место равенство … .. в управле нии (69); в этом случае возможно , в отличие от (71) учесть некоторые процессы элекрон-д ы рочного рассеяния более высокого порядка . Различие между подходами Хосегава-Канамори [169, 173, 179] и Харриса-Цукермана [180] наиболее заметно проя вляется при рассмотрении коллективных эффектов , в частности , при вычислении спиновой воспри имчивости . Это связанно с тем , что пр и построении теории электронных и магнитных свойств неупорядоченных сплавов описывающихся гамильтонианом (69), необходимо учитывать случайное расположение атомов компонент на решётке и влияния кулоновской корреляции электронов на эле к тронную структуру и физическ ие свойства . Если , как мы видели выше , одно-частичные характеристики сплавов (например , па раметр асферичности г ) слабо зависит от корреляционных эффект ов . То , для коллективных свойств правильный учёт корреляции более существен.
1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
- Маша, твой курит?
- Только после секса.
- Но это же вредно!
- Если 2 раза в год, то не страшно.
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по физике "Сплавы магнитных переходных металлов", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru