Реферат: Культура и общество - текст реферата. Скачать бесплатно.
Банк рефератов, курсовых и дипломных работ. Много и бесплатно. # | Правила оформления работ | Добавить в избранное
 
 
   
Меню Меню Меню Меню Меню
   
Napishem.com Napishem.com Napishem.com

Реферат

Культура и общество

Банк рефератов / Биология

Рубрики  Рубрики реферат банка

закрыть
Категория: Реферат
Язык реферата: Русский
Дата добавления:   
 
Скачать
Microsoft Word, 2099 kb, скачать бесплатно
Заказать
Узнать стоимость написания уникального реферата
Текст
Факты использования реферата

Узнайте стоимость написания уникальной работы

1.1. КАТЕГОРИИ "МИКРО" И "МАКРО"

Законы механики Ньютона строго инвариантны, неизменны относительно изменения знака времени: замена +t на -t ничего в них не меняет. Поэтому и говорят, что механика обратима, - если мы абсолютно точно зададим начальные координаты и импульсы частиц, то можем узнать сколь угодно далекое прошлое и сколь угодно далекое будущее системы. Не беда, что мы не способны сделать это практически (ни один компьютер не справится с такой задачей), главное, что мы можем это сделать теоретически. В мире И.Ньютона все события раз и навсегда предопределены, это мир строгого детерминизма, в котором нет места случайностям.

А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении - в сторону повышения энтропии, возрастания хаоса, что сопровождается рассеянием, обесцениванием энергии. Так всегда и происходит на практике: сама собой лучистая энергия пламени свечи может только безвозвратно рассеиваться в пространстве. Однако можно ли этот принцип обосновать теоретически?

Обосновать какое-либо явление теоретически - значит вывести его из возможно более общих законов природы, принятых за основу научной картины мира. Такими законами по праву считаются законы механики Ньютона, и поэтому проблема формулируется следующим образом: как можно вывести необратимость термодинамики из обратимости механики?

Впервые эту проблему пытался решить во второй половине прошлого века Л.Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы частиц (это так называемая Н-теорема) и получил желаемый результат. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании "стрелы времени", и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.

И вообще существование "стрелы времени" может быть только самостоятельным постулатом, потому что означает нарушение симметрии решений уравнений движения. Но какая физическая реальность соответствует такому постулату? Получается так, что либо из обратимой механики можно вывести только обратимую термодинамику (допускающую возможность "вечного двигателя" второго рода), либо необратимую термодинамику можно вывести только из необратимой механики (допускающей возможность "вечного двигателя" первого рода).

Интересно, что обе эти возможности действительно были испробованы. Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине нашего века пулковский астроном Н.А.Козырев попытался создать необратимую механику, в которой "стрела времени" имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную "жизненной силе".

1.2. "ПОРЯДОК ИЗ ХАОСА"

Так называется известная книга нобелевского лауреата И.Р.Пригожина, написанная им в соавторстве с историком науки И.Стенгерс. Это название буквально в двух словах характеризует суть исследований, начатых этим замечательным ученым в пятидесятые годы нашего столетия и завершившихся созданием особой, неравновесной термодинамики.

Классическая термодинамика, которую Больцман пытался обосновать с помощью классической же механики, описывает только поведение строго изолированных систем, близких к состоянию термодинамического равновесия, отклоняющихся от него лишь в пределах чисто статистических флуктуаций. В таких системах могут происходить только процессы деструктивного характера, сопровождающиеся неуклонным возрастанием энтропии. Однако повсеместно в природе наблюдаются и процессы самоорганизации вещества, самопроизвольного возникновения из хаоса неравновесных, так называемых диссипативных структур. Наиболее яркими примерами подобных процессов могут служить явления самозарождения жизни и биологической эволюции.

Означает ли это, что в некоторых случаях второе начало термодинамики может нарушаться? Острая дискуссия на эту тему длилась многие годы и, в конце концов, завершилась победой сторонников строгого соблюдения фундаментальных законов природы. Но при этом был сделан ряд существенных уточнений, касающихся не самих законов, а границ их применимости к реальным системам. Так сказать, не самой структуры научного языка, а смысла используемых в нем слов. Например, ревизии пришлось подвергнуть смысл понятия "хаос".

Хаос, царящий в равновесных системах, носит сугубо статистический характер, и мы говорим лишь о вероятности отклонения системы от состояния равновесия. Реакция такой системы на то или иное возмущающее воздействие линейна - она прямо пропорциональна возмущающей силе и стремится вернуть систему в прежнее состояние. Так, если по гладкой трубе с небольшой скоростью течет жидкость, то в ней случайно возникают малые завихрения, но эти завихрения сами собой гасятся, и в целом поток остается упорядоченным, ламинарным.

Но если система сильно неравновесна, то есть обладает значительным избытком свободной энергии, то в ней может возникать хаос особого рода, называемый динамическим; реакция такой системы на возмущающие воздействия нелинейна и может быть сколь угодно большой при сколь угодно малом первичном возмущении. Так, если скорость движения жидкости по трубе превышает некоторую критическую величину, то малейшая неоднородность потока немедленно приведет к катастрофическому превращению ламинарного потока в неупорядоченный, турбулентный.

Однако, динамический хаос замечателен тем, что за внешне совершенно непредсказуемым поведением системы кроется строгий детерминизм - все происходящие в ней процессы можно математически рассчитать с любой требуемой точностью. Еще одна особенность такого хаоса заключается в том, что он может служить источником самозарождения строго упорядоченных структур. Например, в турбулентном потоке могут возникать устойчивые вихри - подобные вихри (так называемую "дорожку Кармана") можно наблюдать за быстро плывущей лодкой.

1.3. ПОНЯТИЕ СИСТЕМЫ

Ревизии пришлось подвергнуть и смысл понятия "система". Когда система в целом находится в состоянии, далеком от истинного термодинамического равновесия, а это относится ко всем реально существующим системам, то в ее отдельных частях могут самопроизвольно происходить процессы самоорганизации, сопровождающиеся понижением энтропии. Если не учитывать того, что подсистемы, в которых из динамического хаоса самозарождаются диссипативные структуры, питаются свободной энергией внешней среды, то возникает видимость нарушения второго начала термодинамики. Но все становится на свои места, если принять во внимание то обстоятельство, что процессы самоорганизации, происходящие в локальных областях, сопровождаются неуклонным ростом энтропии всей системы в целом.

Так, жизнь на Земле зародилась в сильно неравновесной среде, а возникшие организмы стали жить и эволюционировать, потребляя свободную энергию, поступающую к ним извне, - то есть, в конечном счете, энергию Солнца. Но само Солнце не вечно (если, конечно, верна термоядерная гипотеза происхождения его энергии) и должно погаснуть после того, как весь водород превратится в гелий. Так же должны, видимо, рано или поздно погаснуть и все прочие звезды, в результате чего вся Вселенная погрузится во мрак "тепловой смерти", наступление которой пророчил в прошлом веке Р.Клаузиус.

Но в какой мере Солнце и звезды можно считать изолированными системами? Может быть, в действительности они связаны друг с другом какими-то особыми энергетическими потоками (возможность существования которых, кстати, допустил Н.А.Козырев)? Тогда, все далее и далее расширяя пределы рассматриваемой системы, мы будем отодвигать в бесконечность момент наступления "тепловой смерти" и придем к утешительному выводу о том, что она никогда не наступит. Именно путем таких рассуждений принято опровергать пессимистический прогноз Клаузиуса.

Увы, за легкомысленное обращение с бесконечностью приходится платить. В вечно существующей бесконечно большой нелокальной Вселенной уже не будет привычных нам пространства, времени и движения - а следовательно, в ней не будет ни энергии, ни вещества как таковых. Все известные нам законы природы могут иметь только локальный, местный характер.

Это значит, что неосторожное использование понятия "бесконечность" (а оно неявно содержится в таких часто употребляемых словах, как "мгновенное", "всегда", "никогда" и некоторых других) может приводить к парадоксальным умозаключениям и поэтому его смысл (как и смысл понятий "система", "хаос", проанализированных Пригожиным) тоже нуждается в уточнении.

1.4. БЕСКОНЕЧНОСТЬ: ПОТЕНЦИАЛЬНАЯ И АКТУАЛЬНАЯ

С точки зрения математики бесконечно большая величина - это величина, которая все время возрастает, но никогда не достигает какого-либо определенного значения: n(t)>? при t>?. Такая бесконечность называется потенциальной, потому что она существует лишь в принципе; ее геометрический образ - прямая, неограниченно продолженная в обе стороны. Но математики могут прекрасно обходиться и без часов, необходимых для измерения времени, тайно содержащегося в символе n>?, что позволяет им обходиться для обозначения бесконечно большой величины упрощенной записью: n=?. Такая бесконечность называется актуальной, поскольку она как бы завершена к моменту, когда мы ей воспользовались; ее геометрический образ - любой конечный отрезок прямой, состоящей из бесконечного множества бесконечно малых математических точек.

Какая бесконечность более "правильная"? По сути дела, эта проблема была поставлена еще в знаменитых апориях Зенона (например, "Ахилл и черепаха"), но спор математиков (а также логиков и философов) на эту тему не завершен до сих пор. А вот физики зачастую не делают никаких различий между потенциальной и актуальной бесконечностями и очень раздражаются, когда в результате вычислений получают бесконечно большие величины, называемые расходимостями. И делают грубейшую ошибку, подменяя их просто очень большими, но конечными числами.

Вместе с тем не следует забывать, что для экспериментатора бесконечно больших (равно как и бесконечно малых) величин действительно не существует, он всегда получает конечные результаты, а хвост бесконечности упрятывает в ошибку с помощью теории вероятности. Что же касается бесконечностей, с которыми имеет дело теоретик, то к ним можно относиться двояко: считать их либо потенциальными, либо актуальными.

Потенциальная бесконечность поддается так называемой калибровке, ее можно в любой момент приравнять к нулю и начать отсчет сызнова, с t0=0; актуальная бесконечность такой процедуре не поддается, поскольку вообще существует вне времени и, соответственно, вне реальной физики.

1.5. ЗАКОНЫ НЬЮТОНА

Модель Ньютона - это одно тело, движущееся в абсолютном бесконечном пространстве равномерно и прямолинейно до тех пор, пока на это тело не подействует сила (первый закон механики) или два тела, действующих друг на друга с равными и противоположно направленными силами (третий закон механики); сама же сила считается просто причиной ускорения движущихся тел (второй закон механики), то есть, как бы существует сама по себе и неизвестно откуда берется. По Ньютону, все взаимодействия происходят мгновенно, то есть с актуально бесконечно большой скоростью; однако для обитателей физического мира мгновенных взаимодействий быть не может, поскольку 1/n(t)>0 при n(t)>? только в том случае, если t>?.

Если соударения тел происходят действительно мгновенно, то есть за актуально бесконечно малый промежуток времени, то эти тела никогда не могли бы и никогда не смогут находиться на конечных расстояниях друг от друга, а должны всегда составлять единое целое, существующее вне времени и пространства. Наш многообразный физический мир должен представляться бесконечно малой точкой, внутри которой не существует ни причинности, ни законов сохранения, он актуально бесконечно мал и поэтому нелокален - в нем все явления связаны, скоррелированы друг с другом, потому что происходят в одно и то же время, в одном и том же месте, в одной бесконечно малой точке. Но с нашей точки зрения как конечных обитателей физического мира (то есть при взгляде на него как бы "изнутри"), этот мир потенциально бесконечен и, следовательно, непрерывно расширяется (n>?), но не рассеивается, потому что его расширение сопровождается эволюцией, а обитатели конечного физического мира не могут произвести полного обращения времени и вынуждены скрывать свою слабость с помощью теории вероятностей.

Иначе говоря, наш физический мир необратим только потому, что он локален, конечен во времени и в пространстве и проблема возникновения макроскопической необратимости из микроскопической обратимости есть ложная проблема, проистекающая из неверного понимания смысла слов языка, на котором классическая механика говорит с природой.

1.6. ТЕОРЕМА Дж.БЕЛЛА

Согласно теореме Дж.Белла, всякая теория, выводы которой подтверждаются физическими экспериментами, не может быть одновременно локальной и детерминистской. Классическая механика описывает мир в духе строгого детерминизма и поэтому оказывается, по сути дела, нелокальной теорией, так как допускает возможность мгновенных взаимодействий. А классическая термодинамика локальна (иначе какой бы смысл имели законы сохранения?), и поэтому вероятностное описание происходящих в ней процессов, приводящее к выводу о существовании "стрелы времени", оказывается совершенно неизбежным. Получается, что теорема Белла реабилитирует Н-теорему Больцмана!

Динамический хаос поддается строго детерминированному математическому описанию, и поэтому вся созидающая среда в целом, в которой он существует, должна быть нелокальной, а все происходящие в ней процессы должны быть скоррелированными, согласованными друг с другом, несмотря на отсутствие обычных физических связей (обычных "сил"). Экспериментальная физика локальна, и поэтому ей приходится пользоваться для описания наблюдаемых явлений квантовой теорией и теорией относительности, не поддающихся истолкованию с точки зрения так называемого здравого смысла, требующего строго детерминированного взгляда на мир.

 Наш мир столь сложен для восприятия только потому, что он познается человеком одновременно и с помощью разума, как бы "извне", и "изнутри", с помощью органов чувств, дополняемых различными приборами. В первом случае человек ставит себя в положение всемогущего ТВОРЦА; во втором случае он оказывается лишь исчезающе малой и бесконечно слабой пылинкой.

Глава 2. ОТ ФИЗИКИ НЕОБХОДИМОГО К ФИЗИКЕ ВОЗМОЖНОГО

Время - неотъемлемая составляющая нашего бытия. Веками пленяло оно воображение художников, философов, поэтов. Включение времени в галилеевскую механику ознаменовало рождение новой науки. Центральное место нашего пособия - проблема стрелы времени (это понятие ввел в 1928 году Артур Эддингтон). Ведь в том виде, в каком время входит в основные законы физики, оно само не вносит никакого различия между прошлым и будущим! Многие нынешние физики воспринимают отрицание стрелы времени как постулат: до тех пор и покуда речь идет о фундаментальном уровне описания, ее не существует.

Тем не менее во всех явлениях макроскопической физики, химии, геологии, биологии или гуманитарных наук будущее и прошлое неравноправны - в них присутствует стрела времени. Каким же образом, где она возникает, если в исходных физических законах ее нет? Откуда появляется асимметрия между прошлым и будущим? Или, может быть, воспринимаемая нами направленность времени - это не более чем иллюзия? Так мы приходим к главному парадоксу времени.

Парадокс времени не был осмыслен вплоть до второй половины XIX века. В те годы законы динамики уже давно воспринимались как выражающие идеал объективного знания. А поскольку из этих законов следовала эквивалентность прошлого и будущего, любые попытки ввести стрелу времени в фундамент физики наталкивались на упорное сопротивление - их рассматривали как покушение на этот идеал и предпочитали возлагать ответственность за различие между прошлым и будущим на наблюдателя, привносящего в описание явлений разные приближения, неточности.

Однако сейчас разделять эту точку зрения уже невозможно. В последние десятилетия родилась новая наука - физика неравновесных процессов, связанная с понятиями самоорганизации и диссипативных структур. Если прежде стрела времени проникала в физику через такие простые процессы, как диффузия и вязкость, которые еще можно понять, исходя из обратимой во времени динамики, то ныне ситуация иная. Теперь мы знаем, что необратимость приводит к множеству новых явлений - образованию вихрей, колебательным химическим реакциям или лазерному излучению. Во всем этом необратимость играет конструктивную, организующую роль. Невозможно представить жизнь в мире, лишенном взаимосвязей, которые создаются принципиально необратимыми процессами. Следовательно, утверждать, будто стрела времени - "всего лишь феноменология" и обусловлена способом нашего описания природы, с научной точки зрения абсурдно.

Парадокс времени ставит перед нами проблему содержания и роли законов природы. Отождествление науки с поиском этих законов, по-видимому, есть характерная черта западного мышления. Прототипом универсального закона природы может служить один из законов Ньютона, который кратко формулируют так: ускорение пропорционально силе. Этот закон имеет две важные особенности. Он детерминистичен: коль скоро начальные условия известны, мы можем предсказывать движение. И он обратим во времени: между предсказанием будущего и восстановлением прошлого нет никакого различия; иными словами, движения от текущего к будущему состоянию и обратно - от текущего к начальному - равноправны.

Закон Ньютона лежит в основе классической механики - науки о движении материи, о траектории. С начала XX века границы физики значительно расширились, теперь у нас есть квантовая механика и теория относительности, но основные отличительные особенности закона Ньютона - детерминизм и обратимость во времени - сохранились.

Понятие "закон природы" заслуживает более подробного анализа. Мы настолько привыкли к нему, что оно воспринимается как трюизм, как нечто само собой разумеющееся. Однако в других картинах мира привычная нам концепция закона природы отсутствует. По Аристотелю, живые существа не подчиняются никаким законам; деятельность этих существ обусловлена автономными внутренними причинами, каждое из них стремится к достижению своей собственной истины. А в Китае господствовали взгляды об изначальной гармонии космоса, некоем статическом равновесии, связывающем воедино природу, общество и небеса. Идея о том, что в мире могут действовать законы, вызрела в недрах европейской цивилизации. Значительное влияние на формирование представлений о законах природы оказала Библия с ее Всеведущим и Всемогущим божеством.

Однако на протяжении всей истории западной мысли неоднократно поднимался один и тот же вопрос: что есть возникновение нового в мире, управляемом детерминистическими законами?

Впервые этим вопросом задались задолго до рождения современной науки. Платон связывал разум и истину с "миром идей" - высшим бытием, не подверженным изменениям, текучести реального мира с его постоянным "становлением". Становление - неиссякаемый поток воспринимаемых нами явлений - философ относил к сфере чистого мнения. Однако Платон сознавал ущербность такой позиции, поскольку она принижала и жизнь, и мысль. В "Софисте" он приходит к заключению, что необходимы и бытие, и становление.

 С той же трудностью столкнулись и атомисты. Чтобы допустить возникновение нового, Лукрецию пришлось ввести "клинамен" - некий фактор, возмущающий свободное падение атомов в пустоте.

Обращение к клинамену часто подвергалось критике за введение в атомистическое описание чужеродного элемента. Но и через два тысячелетия мы встречаем аналогичную попытку в работе Эйнштейна, посвященной спонтанному испусканию света возбужденным атомом. Параллелизм особенно неожиданный, если мы вспомним, что Лукреций и Эйнштейн разделены, по-видимому, величайшей революцией в наших отношениях с природой - рождением новой науки.

И клинамен, и спонтанное испускание света относятся к событиям, иными словами, к реализациям определенных возможностей, заданных своими вероятностями. События и вероятности фигурируют в теориях эволюции, будь то дарвинизм или история человечества (мы увидим, что события также связаны с термодинамической стрелой времени в области сильно неравновесных процессов). Можно ли пойти дальше, чем Лукреций и Эйнштейн, "добавившие" события к детерминистическим законам? Можно ли "видоизменить" само понятие физического закона так, чтобы включить в наше описание природы необратимость? Принятие такой программы повлекло за собой основательный пересмотр законов природы, который стал возможен благодаря замечательным успехам, связанным с идеями неустойчивости и хаоса.

Начнем с рассмотрения классической динамики. Представляется, что все системы, описываемые законами Ньютона, в чем-то одинаковы. Конечно, каждому известно, что рассчитать траекторию системы трех тел, например Солнца, Земли и Юпитера, труднее, чем траекторию падающего камня, но эти трудности считали непринципиальными, связанными только с большим объемом вычислений. Однако в последние десятилетия выяснилось, что подобное мнение неверно - не все динамические системы одинаковы. Оказалось, что такие системы подразделяются на устойчивые и неустойчивые. Так, маятник устойчив: слабые возмущения мало сказываются на его движении; но для большинства динамических систем малые начальные отклонения постепенно возрастают. Крайний случай неустойчивых систем - так называемые хаотические системы, для которых описание в терминах траекторий становится недостаточным, поскольку первоначально сколь угодно близкие траектории со временем экспоненциально расходятся.

Итак, хаос появляется в макроскопических необратимых процессах, где он, так сказать, "негативен" - делает невозможными определенные предсказания вследствие быстрого расхождения соседних траекторий. Этот эффект равнозначен чувствительности решения уравнения к начальным условиям, через которую обычно определяют хаос. Однако важный новый момент состоит в том, что хаос обретает теперь и "позитивные" аспекты. Так как отдельные траектории становятся чрезмерной идеализацией, Пригожин вынужден обратиться к вероятностному описанию в терминах ансамбля возможных траекторий. Такое описание само по себе не ново: оно служило отправным пунктом развитого Гиббсом и Эйнштейном подхода к статистической физике.

Здесь нужно подчеркнуть одно очень существенное обстоятельство: из вероятностного описания, вводимого для хаотических систем, вытекает необратимость, потому что оно применимо уже не к отдельной траектории, а к пучку, расходящемуся "вееру" возможностей. Это утверждение есть результат строгого анализа методами современной математики. Значит, в таком вероятностном представлении прошлое и будущее начинают играть различные роли. Иначе говоря, хаос вводит стрелу времени в фундаментальное динамическое описание.

Хаос позволяет разрешить парадокс времени, но он делает и нечто большее - привносит вероятность в классическую динамику, то есть в область детерминистической науки. В данном контексте вероятность выступает уже не как следствие нашего незнания, а как неизбежное выражение хаоса. В свою очередь это позволяет по-новому определить хаос. Мы сказали, что хаос приводит к необратимому вероятностному описанию, теперь же мы перевернем это утверждение: все системы, допускающие необратимое вероятностное описание, будем считать хаотическими. Таким образом, системы, о которых идет речь, допускают описание не в терминах отдельных траекторий (или отдельных волновых функций в квантовой механике), а только в понятиях пучков (или ансамблей) траекторий.

Сфера проявлений хаоса чрезвычайно расширилась и включила в себя фактически все системы, описываемые современными теориями взаимодействующих полей. Столь широкое обобщение понятий хаоса требует новой - третьей - формулировки законов физики: первая была основана на исследовании индивидуальных траекторий или волновых функций; вторая - на теории ансамблей Гиббса и Эйнштейна (с динамической точки зрения вторая формулировка не вносит новизны, поскольку, будучи примененной к отдельным траекториям или волновым функциям, сводится к первой). Теперь мы приходим к третьей формулировке, имеющей совершенно иной статус: она применима только к ансамблям и справедлива только для динамических систем. Она приводит к выводам, которые не могут быть получены ни на основе ньютоновской, ни ортодоксальной квантовой механики. Именно это новое представление, вводящее необратимость в фундамент описания природы, позволяет объединить свойства микро и макромира.

Мотивацией концепции И.Р. Пригожина служил парадокс времени, но он существует не сам по себе. С ним тесно связаны два других парадокса, которые, как мы увидим, имеют самое непосредственное отношение к отрицанию стрелы времени: квантовый парадокс и космологический парадокс.

 В квантовом мире движение описывают волновыми функциями. Главное отличие волновой механики от ньютоновской состоит в том, что классические траектории, получаемые из уравнения движения, непосредственно соответствуют наблюдаемым, тогда как квантово-механические волновые функции, будучи решениями уравнения Шредингера (играющего, в принципе, ту же роль, что уравнение Ньютона), задают только амплитуду вероятности, с которыми реализуются различные возможные траектории. И чтобы получить сами вероятности каждого исхода, нужно произвести дополнительную операцию - редукцию (коллапс) волнового пакета. Эта операция связана с процедурой измерения, она лежит вне основного уравнения теории.

Отсюда вытекает двойственность квантовой механики - наличие двух разнородных элементов (волновой функции и ее редукции) приводит к концептуальным трудностям, споры вокруг которых продолжаются вот уже шестьдесят лет - с момента возникновения этой теории. Хотя ее с полным основанием называли наиболее успешной из всех существующих физических теорий, пока так и не удалось выяснить физический смысл редукции волновой функции. Многие ученые полагают, что ответственность за нее несет наблюдатель и производимые им измерения.

Между парадоксом времени и квантовым парадоксом есть тесная аналогия. Оба они отводят нам довольно странную роль: получается, что человек ответствен как за стрелу времени, так и за переход от квантовой потенциальной возможности к уже свершившемуся, то есть за все особенности, связанные с переходом от становления к событиям в нашем физическом рассмотрении.

Поскольку квантовые хаотические системы описывают не в терминах волновых функций, а сразу в терминах вероятностей, отпадает необходимость в коллапсе волновой функции. Временная эволюция хаотических систем преобразует описание через волновые функции в описание ансамбля траекторий. Посредником, связывающим нас с природными явлениями, выступает уже не акт наблюдения, а квантовый хаос.

Идеи, охватывающие общим подходом хаос, стрелу времени и квантовый парадокс, приводят нас к более "целостному" пониманию природы, которое включает в себя и становление, и события (на всех уровнях описания). Традиционные законы природы соответствовали замкнутой детерминированной Вселенной, прошлое и будущее которой, по сути, неразличимы. Это рассматривалось как триумф человеческого разума, преодолевающего ограниченность видимой изменчивости природы. Но такой взгляд был чужд другим наукам, которые предполагали стрелу времени. Теперь мы понимаем, что детерминированные, симметричные во времени законы справедливы только для устойчивых классических и квантовых систем, то есть для весьма ограниченного их класса. Место этих законов заняли ныне вероятностные представления, которые соответствуют открытой Вселенной, где в каждый последующий момент времени возникает новое, где в игру вступают неизвестные прежде факторы.

Упомянут и третий парадокс - космологический. Современная космология приписывает нашей Вселенной некий возраст: она родилась с Большим Взрывом около 15 миллиардов лет назад. Ясно, что это Событие. Но событие не входящее в привычную систему законов природы: траектории там нигде не начинаются и ни на чем не заканчиваются. Именно поэтому гипотеза Большого Взрыва с ее проблемой сингулярности (исходного состояния) породила в физике глубочайший кризис. В поисках выхода из него Стивен Хокинг и другие ученые предположили, что космологическое время есть иллюзия. Если чисто математически ввести в теорию мнимое время, то различие между пространственными координатами и временем, которое осталось в общей теории относительности, полностью стирается. Сингулярность тоже исчезает, поскольку тогда и пространство, и время уже не имеют границ, а значит, время не имеет начала - оно становится чистой "акциденцией", то есть не сущностным, а побочным свойством мира. Так формально решается проблема Большого Взрыва, а заодно снимается всякое различие между бытием и становлением. По выражению Хокинга, Вселенная "просто есть, и все!".

С точки зрения И.Р. Пригожина, события - результат неустойчивости, хаоса. Это утверждение остается в силе на всех уровнях, включая космологический. В детерминистических рамках все предопределено с момента Большого Взрыва. В рамках этой концепции законы природы относятся к потенциальным возможностям.

2.1. СОВРЕМЕННАЯ КОСМОЛОГИЯ И КОСМОГОНИЯ

С глубокой древности и до начала нынешнего столетия космос считали неизменным. Звездный мир олицетворял собой абсолютный покой, вечность и беспредельную протяженность. Открытие в 1929 году взрывообразного разбегания галактик, то есть быстрого расширения видимой части Вселенной, показало, что Вселенная нестационарна. Экстраполируя процесс расширения в прошлое, сделали вывод, что 15-20 миллиардов лет назад Вселенная была заключена в бесконечно малый объем пространства при бесконечно большой плотности и температуре вещества-излучения (это исходное состояние называют "сингулярностью"), а вся нынешняя Вселенная конечна - обладает ограниченным объемом и временем существования.

Отсчет времени жизни такой эволюционирующей Вселенной ведут от момента, при котором, как полагают, внезапно нарушилось состояние сингулярности и произошел "Большой Взрыв". По мнению большинства исследователей, современная теория "Большого Взрыва" (ТБВ) в целом довольно успешно описывает эволюцию Вселенной, начиная примерно с 10-44 секунды после начала расширения. Единственной брешью в прекрасном сооружении ТБВ они считают проблему Начала - физического описания сингулярности. Однако и тут преобладает оптимизм: ожидают, что с созданием "Теории Всего Сущего", объединяющей все фундаментальные физические силы в единое универсальное взаимодействие, эта проблема будет автоматически решена. Тем самым построение модели мироздания в наиболее общих и существенных чертах благополучно завершится.

Этот энтузиазм весьма напоминает настроения, царившие в физике на рубеже XIX-XX столетий, когда казалось, что строительство здания точных наук в основном приближается к концу и оставшиеся непроясненными несколько "темных пятен" (в частности, проблема излучения "черного тела", из которой родилась квантовая механика) общей картины не портят. По-видимому надежды, разделяемые нынешними сторонниками ТБВ, столь же иллюзорны.

15-20 миллиарда лет - так определяет сейчас наука возраст Вселенной. Когда человек не знал этой цифры, он не мог задаваться вопросом, которым он задается сегодня: что было до этой даты? До этой даты, утверждает современная космогония, вся масса Вселенной была сжата, была втиснута в некую точку, исходную каплю космоса.

Когда Вселенная пребывала в исходном точечном состоянии, рядом, вне ее не существовало материи, не было пространства, не могло быть времени. Поэтому невозможно сказать, сколько продолжалось это - мгновение или бессчетные миллиарды лет. Невозможно сказать не только потому, что нам это неизвестно, а потому что не было ни лет, ни мгновений - времени не было. Его не существовало вне точки, в которую была сжата вся масса Вселенной, потому что вне ее не было ни материи, ни пространства. Времени не было, однако, и в самой точке, где оно должно было практически остановиться.

Не обязательно, чтобы исходная точка - то "космическое яйцо", из которого родилась Вселенная, была заполнена сверхплотной материей, мыслима такая космологическая схема, в которой Вселенная не только логически, но и физически возникает из ничто, причем при строгом соблюдении всех законов сохранения. Ничто (вакуум) выступает в качестве основной субстанции, первоосновы бытия.

В свете новых космогонических представлений само понимание вакуума было пересмотрено наукой. Вакуум есть особое состояние вечно движущейся, развивающейся материи. На исходных стадиях Вселенной интенсивное гравитационное поле может порождать частицы из вакуума.

И снова необъяснимую аналогию этим представлениям современного знания находим мы у древних. О переходе вещества в иное состояние, даже об "исчезновении материи" в момент гибели Вселенной упоминал философ и богослов Ориген (II-III в.н.э.). Когда Вселенная возникает опять, "материя, - писал он, - вновь получает бытие, образуя тела ... ".

 Нам неизвестно, почему, в силу каких причин это исходное, точечное состояние было нарушено и произошло то, что обозначается сегодня словами "Большой Взрыв". Согласно сценарию исследователей, вся наблюдаемая сейчас Вселенная размером в 10 миллиардов световых лет возникла в результате расширения, которое продолжалось всего 10-30 с. Разлетаясь, расширяясь во все стороны, материя отодвигала безбытие, творя пространство и начав отсчет времени. Так видит становление Вселенной современная космогония.

 Если концепция о "Большом Взрыве" верна, то он должен был бы оставить в космосе своего рода "след", "эхо". Такой "след" был обнаружен. Пространство Вселенной оказалось пронизано радиоволнами миллиметрового диапазона, разбегающимися равномерно по всем направлениям. Это "реликтовое излучение Вселенной" и есть приходящий из прошлого след сверхплотного, сверхраскаленного ее состояния, когда не было еще ни звезд, ни туманностей, а материя представляла собой дозвездную, догалактическую плазму.

Теоретически концепция "расширяющейся Вселенной" была выдвинута известным ученым А.А.Фридманом в 1922-1924 годах. Десятилетия спустя она получила практическое подтверждение в работах американского астронома Э.Хаббла, изучавшего движение галактик. Хаббл обнаружил, что галактики стремительно разбегаются, следуя некоему импульсу, заданному в момент "Большого Взрыва". Если разбегание это не прекратится, будет продолжаться неограниченно, то расстояние между космическими объектами будет возрастать, стремясь к бесконечности. По расчетам Фридмана, именно так должна была бы проходить дальнейшая эволюция Вселенной. Однако при одном условии - если средняя плотность массы Вселенной окажется меньше некоторой критической величины (эта величина составляет примерно три атома на кубический метр). Какое-то время назад данные, полученные американскими астрономами со спутника, исследовавшего рентгеновское излучение далеких галактик, позволили рассчитать среднюю плотность массы Вселенной. Она оказалась очень близка к той критической массе, при которой расширение Вселенной не может быть бесконечно.

Обратиться к изучению Вселенной посредством исследования рентгеновских излучений пришлось потому, что значительная часть ее вещества не воспринимается оптически. По крайней мере 50% массы нашей Галактики мы "не видим", писал журнал английских ученых "New Scientist". Об этом не воспринимаемом нами веществе свидетельствуют, в частности, гравитационные силы, которые определяют движение нашей и других галактик, движение звездных систем. Вещество это может существовать в виде "черных дыр", масса которых составляет сотни миллионов масс нашего Солнца, в виде нейтрино или других каких-то неизвестных нам форм. Не воспринимаемые, как и "черные дыры", короны галактик могут быть, считают некоторые, в 5-10 раз больше массы самих галактик.

Предположение, что масса Вселенной значительно больше, чем принято считать, нашло новое весьма веское подтверждение в работах физиков. Ими были получены первые данные о том, что один из трех видов нейтрино обладает массой покоя. Если остальные нейтрино имеют те же характеристики, то масса нейтрино во Вселенной в 100 раз больше, чем масса обычного вещества, находящегося в звездах и галактиках.

Это открытие позволяет с большей уверенностью говорить, что расширение Вселенной будет продолжаться лишь до некоторого момента, после которого процесс обратится вспять - галактики начнут сближаться, стягиваясь снова в некую точку. Вслед за материей будет сжиматься в точку пространство. Произойдет то, что астрономы обозначают сегодня словами "Схлопывание Вселенной".

Заметим ли мы или, скажем, обитатели других миров, существующих в космосе, сжатие Вселенной, начало страшного ее возврата в первоначальный, первозданный хаос? Нет и никогда. Слишком несоизмеримы периоды жизни разумных существ и даже их цивилизаций с эпохами жизни Вселенной. Мы не можем заметить поворота времени, который должен будет произойти, когда Вселенная, достигнув максимума своего разбега, начнет сжиматься.

Поворот течения времени, в масштабах Вселенной, аналогичен подобному же событию, происходящему на сжимающейся, "коллапсирующей" звезде. Условные часы, находящиеся на поверхности такой звезды, сначала должны будут замедлить свой ход, затем, когда сжатие достигнет критического гравитационного "горизонта событий", они остановятся. Когда же звезда "провалится" из нашего пространства-времени, условные стрелки на условных часах двинутся в противоположную сторону - время пойдет обратно. Но всего этого сам гипотетический наблюдатель, находящийся на такой звезде, не заметит. Замедление, остановку и изменение направления времени мог бы воспринять только некто наблюдающий происходящее как бы со стороны, находящийся вне "схлопывающейся" системы. Если наша Вселенная единственная и нет ничего вне ее - ни материи, ни времени, ни пространства, - то не может быть и некоего взгляда со стороны, который мог бы заметить, когда время изменит ход и потечет вспять.

Некоторые ученые считают, что событие это в нашей Вселенной уже произошло, галактики падают друг на друга, и Вселенная вступила в эпоху своей гибели. Существуют математические расчеты и соображения, подтверждающие эту мысль. Сторонники этой точки зрения вспоминают в этой связи одно из "темных мест" Платона. В диалоге "Политик" Платон говорит о времени, которое некогда внезапно "потекло вспять", о странных космических явлениях, сопровождавших это событие. Многие века это сообщение не поддавалось расшифровке, пока в современной космогонии не появились данные, позволяющие попытаться понять его с позиций сегодняшнего знания.

Что произойдет после того, как Вселенная вернется в некую исходную точку? После этого начнется новый цикл, произойдет очередной "Большой Взрыв", праматерия ринется во все стороны, раздвигая и творя пространство, снова возникнут галактики, звездные скопления, жизнь. Такова, в частности, космологическая модель американского астронома Дж.Уиллера, модель попеременно расширяющейся и "схлопывающейся" Вселенной.

Известный математик и логик Курт Гёдель математически обосновал то положение, что при определенных условиях наша Вселенная действительно должна возвращаться к своей исходной точке с тем, чтобы потом опять совершить тот же цикл, завершая его новым возвращением к исходному своему состоянию. Этим расчетам соответствует и модель английского астронома П.Дэвиса, модель "пульсирующей Вселенной". Но что важно - Вселенная Дэвиса включает в себя замкнутые линии времени, иначе говоря, время в ней движется по кругу. Число возникновений и гибели, которые переживает Вселенная, бесконечно.

И снова - свидетельства прошлого. За тысячи лет до того, как современное логически выдержанное, рациональное знание пришло к этой картине мира, подобное представление устойчиво присутствовало в сознании древнего человека. Вселенная, писал шумерский философ и жрец Бероуз (III в.н.э.), периодически уничтожается и потом воссоздается снова. Из древнего Шумера эта концепция пришла в эллинский мир, Рим, Византию.

А как представляет себе гибель Вселенной современная космогония? Известный американский физик С.Вайнберг описывает это так. После начала сжатия в течение тысяч и миллионов лет не произойдет ничего, что могло бы вызвать тревогу наших отдаленных потомков. Однако, когда Вселенная сожмется до 1/100 теперешнего размера, ночное небо будет источать на Землю столько же тепла, сколько сегодня дневное. Затем через 70 миллионов лет Вселенная сократится еще в десять раз и тогда "наши наследники и преемники (если они будут) увидят небо невыносимо ярким". Еще через 700 лет космическая температура достигнет десяти миллионов градусов, звезды и планеты начнут превращаться в "космический суп" из излучения, электронов и ядер.

 После сжатия в точку, после того, что мы именуем гибелью Вселенной (но что, может, вовсе и не есть ее гибель), начинается новый цикл. Вспомним об упомянутом уже реликтовом излучении, эхе "Большого Взрыва", породившего нашу Вселенную. Излучение это, оказывается, приходит не только из прошлого, но и "из будущего"! Это отблеск "мирового пожара", исходящего от следующего цикла, в котором рождается новая Вселенная. Температура реликтового излучения, наблюдаемого сегодня, на 3? выше абсолютного нуля. Это и есть температура "электромагнитной зари", знаменующей рождение новой Вселенной.

Реликтовое излучение - только ли оно пронизывает наш мир, приходя как бы с двух сторон - из прошлого и грядущего? Только ли это? Материя, составляющая мир, Вселенную и нас, возможно, несет в себе некую информацию. Исследователи с долей условности, но говорят уже о "внутреннем опыте", своего рода "памяти" молекул, атомов, элементарных частиц. Атомы углерода, побывавшего в живых существах "биогенные".

 Коль скоро в момент схождения Вселенной в точку материя не исчезает, то не исчезает, неуничтожима и информация, которую она несет. Наш мир заполнен ею, как он заполнен, материей, составляющей его.

Вселенная, что придет на смену нашей, будет ли она её повторением?

 Вполне возможно, отвечают некоторые космологи.

 Вовсе не обязательно, возражают другие. Нет никаких физических обоснований, считает, например, доктор Р.Дик из Принстонского университета, чтобы всякий раз в момент образования Вселенной физические закономерности были те же, что и в момент начала нашего цикла. Если же эти закономерности будут отличаться даже самым незначительным образом, то звезды не смогут впоследствии создать тяжелые элементы, включая углерод, из которого построена жизнь. Цикл за циклом Вселенная может возникать и уничтожаться, не зародив ни искорки жизни. Такова одна из точек зрения. Ее можно было бы назвать точкой зрения "прерывистости бытия". Оно прерывисто, даже если в новой Вселенной и возникает жизнь: никакие нити не связывают ее с прошлым циклом.

По другой точке зрения, наоборот, "Вселенная помнит всю свою предысторию, сколь бы далеко (даже бесконечно далеко) в прошлое она ни уходила".

2.2. КРИЗИС СОВРЕМЕННОЙ КОСМОЛОГИИ

Представляется, что в понятии космологической сингулярности скрыты, по меньшей мере, три проблемы, решение которых потребует изменения научной картины мира в целом (Г.В.Гивишвили).

Во-первых, при обсуждении свойств сингулярности упор делают, главным образом, на то, что материя была в сверхплотном и сверхгорячем состоянии. При этом часто упускают из виду полное отсутствие пространства-времени, что фактически равнозначно принципиальному отрицанию всего сущего, абсолютному (безотносительно чего бы то ни было) ничто. Но ведь все физические теории объединяет одно, не знающее исключений правило: они предназначены для описания различного рода взаимодействий между частицами и излучением в сопутствующем им пространстве-времени. ТБВ обязывает нас рассматривать возникновение материи-пространства-времени из абсолютного ничто, причем этот процесс единичен, уникален, а значит, никакое его описание не может считаться строго доказательным: теория в принципе непроверяема, поскольку результат ее предсказания невоспроизводим.

Во-вторых, густым туманом окутано происхождение космологической сингулярности. Кажется очевидным, что, коль скоро современное состояние Вселенной преходяще, то и прошлое ее должно быть преходящим, то есть, если фазе расширения предшествовало состояние сингулярности, то оно, в свою очередь, предварялось фазой образования этой сингулярности.

В-третьих, ТБВ не дает ответа на вопрос о причине Большого Взрыва. Она описывает события, происходящие в процессе уже расширяющейся Вселенной, но проблема нарушения сингулярности ("первотолчка") повисает в воздухе, она попросту не рассматривается. Трудность здесь в том, что ни одно из известных фундаментальных взаимодействий не в состоянии преодолеть силы гравитационного сжатия, возникающие при бесконечно большой плотности вещества-излучения.

Важно, что в теории сингулярность возникает не из-за неадекватности математических уравнений или некорректности задания граничных условий. Она представляет собой неотъемлемое свойство любой физической модели конечной нестационарной Вселенной. А между тем, вопреки выводам теории, мы существуем.

Как увязать очевидность бытия Вселенной с отрицанием возможности этого бытия, следующим из теории? По-видимому, нельзя переносить представления о видимой части Вселенной на всю Вселенную. Иначе говоря, нужно признать, что наша конечная, нестационарная вселенная (тогда уже маленькой буквы) представляет собой лишь один из элементов Большой бесконечной Вселенной (с заглавной буквы).

Еще в начале века С.Шарлье предложил модель иерархической Большой Вселенной, в которой малые вселенные распределены как изюминки в пудинге. Трудности современной космологии дают основание вернуться к ней, разумеется, с позиций нового знания. Суть в том, чтобы рассматривать нестационарные отдельные малые вселенные как преходящие элементы вечной и неизменной Большой Вселенной. Но при бесконечно большом объеме Вселенной движение ее как единой системы невозможно. Поэтому бесконечность ее бытия достигается через несвязанные между собой движения локальных масс в составляющих ее вселенных, и вся наша видимая вселенная - лишь одна из них.

Нестационарность вселенных обрекает их на "смертность". Понятие "жизнь" по отношению к ним означает динамическое развитие по определенной программе как целого, а "смерть" - их распад. (Отношения между Большой и малыми вселенными в известном смысле подобны взаимоотношениям сообществ организмов и отдельных особей: бессмертие первых реализуется через смертность вторых.)

Модель Большого Взрыва в первом приближении достаточна для описания эволюции "типичной" вселенной в фазе ее расширения. Но для изучения процессов на масштабах, намного превышающих размеры и время жизни одной такой вселенной, видимо, нужна новая теория. Она должна была бы учитывать тот факт, что отдельная вселенная проявляется как локальная флуктуация кривизны пространства, "евклидовой лишь в среднем".

2.3. ВРЕМЯ И ПРОСТРАНСТВО

В начале XX века выяснилось, что на время "можно влиять"! Очень быстрое движение, например, замедляет бег времени. Затем выяснилось, что поток времени зависит и от поля тяготения. Обнаружилась также тесная связь времени со свойствами пространства. Так возникла и бурно развивается сейчас наука, которую можно назвать физикой времени и пространства.

 Современный этап развития физики характеризуется новым мощным прорывом в нашем понимании строения материи. Если в первые десятилетия XX века было понятно устройство атома и выяснены основные особенности взаимодействия атомных частиц, то теперь физика изучает кварки - субъядерные частицы и проникает глубже в микромир. Все эти исследования теснейшим образом связаны с пониманием природы времени.

Важное значение для науки и будущей технологии имеют такие свойства времени, как его замедление вблизи нейтронных звезд, остановка в черных дырах и "выплескивание" в белых, возможность "превращения" времени в пространство и наоборот.

Каждый знает, что пространство Вселенной трехмерно. Это значит, что у него есть длина, ширина и высота. То же и у всех тел. Или еще: положение точки может быть задано тремя числами - координатами. Если в пространстве проводить прямые линии или плоскости или чертить сложные кривые, то их свойства будут описываться законами геометрии. Эти законы были известны давным-давно, суммированы еще в III веке до нашей эры Евклидом. Именно евклидова геометрия изучается в школе как стройный ряд аксиом и теорем, описывающих все свойства фигур, линий, поверхностей.

Если мы захотим изучать не только местонахождение, но и процессы, происходящие в трехмерном пространстве, то должны включить еще время. Событие, совершающееся в какой-либо точке, характеризуется положением точки, то есть заданием трех ее координат и еще четвертым числом - моментом времени, когда это событие произошло. Момент времени для события есть его четвертая координата. Вот в этом смысле и говорят, что наш мир четырехмерен. Эти факты, конечно, известны давно. Но почему же раньше, до создания теории относительности, такая формулировка о четырехмерии не рассматривалась как серьезная и несущая новые знания? Все дело в том, что уж очень разными выглядели свойства пространства и времени. Когда мы говорим только о пространстве, то представляем себе застывшую картину, на которой тела или геометрические фигуры как бы зафиксированы в определенный момент. Время же неудержимо бежит (и всегда от прошлого к будущему), и тела для этого представления могут "менять места".

В отличие от пространства, в котором три измерения, время одномерно. И хотя еще древние сравнивали время с прямой линией, это казалось всего лишь наглядным образом, не имеющим глубокого смысла. Картина резко изменилась после открытия теории относительности.

 В 1908 году немецкий математик Г.Минковский, развивая идеи этой теории, заявил: "Отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность". Что имел в виду Г.Минковский, высказываясь столь решительно и категорично?

Он хотел подчеркнуть два обстоятельства. Первое - это относительность промежутков времени и пространственных длин, их зависимость от выбора системы отсчета. Второе, оно и является главным в его высказывании, это то, что пространство и время тесно связаны между собой. Они, по существу, проявляются как разные стороны некоторой единой сущности - четырехмерного пространства-времени. Вот этого тесного единения, неразрывности и не знала доэйнштейновская физика. В чем оно проявляется?

Прежде всего, пространственные расстояния можно определять, измеряя время, необходимое свету или вообще любым электромагнитным волнам для прохождения измеряемого расстояния. Это известный метод радиолокации. Очень важно при этом, что скорость любых электромагнитных волн совсем не зависит ни от движения их источника, ни от движения тела, отражавшего эти волны, и всегда равна c (c - скорость света в вакууме, приблизительно равная 300000 км/сек). Поэтому расстояние получается просто умножением постоянной скорости c на время прохождения электромагнитного сигнала. До теории Эйнштейна не знали, что скорость света постоянна, и думали, что так просто поступать при измерении расстояний нельзя.

Конечно, можно поступить и наоборот, то есть измерять время световым сигналом, пробегающим известное расстояние. Если, например, заставить световой сигнал бегать, отражаясь между двумя зеркалами, разнесенными на три метра друг от друга, то каждый пробег будет длиться одну стомиллионную долю секунды. Сколько раз пробежал этот своеобразный световой маятник меду зеркалами, столько стомиллионных долей секунды прошло.

Важное проявление единства пространства и времени состоит в том, что с ростом скорости тела течение времени на нем замедляется в точном соответствии с уменьшением его продольных (по направлению движения) размеров. Благодаря такому точному соответствию из двух величии - расстояния в пространстве между какими-либо двумя событиями и промежутка времени, их разделяющего, простым расчетом можно получить величину, которая постоянна для всех наблюдателей, как бы они не двигались, и никак не зависит от скорости любых "лабораторий". Эта величина играет роль расстояния в четырехмерном пространстве-времени. Пространство-время и есть то "объединение" пространства и времени, о котором говорил Г.Минковский.

Вообразить такое формальное присоединение времени к пространству, пожалуй, нетрудно. Гораздо сложнее наглядно представить себе четырехмерный мир. Удивляться трудности не приходится. Когда мы в школе рисуем плоские геометрические фигуры на листе бумаги, то обычно не испытываем никаких затруднений в изображении этих фигур; они двумерны (имеют только длину и ширину).

Гораздо труднее воображать трехмерные фигуры в пространстве - пирамиды, конусы, секущие их плоскости и т.д. Что касается воображения четырехмерных фигур, то иногда это очень трудно даже для специалистов, всю жизнь работающих с теорией относительности.

Так, известный английский физик-теоретик, крупнейший специалист в теории относительности Стивен Хокинг говорит: "Невозможно вообразить четырехмерное пространство. Я сам с трудом представляю фигуры в трехмерном пространстве!". Поэтому человеку, испытывающему трудность с представлением четырехмерия, огорчаться не надо. Но специалисты с успехом используют понятие пространства-времени. Так в пространстве-времени можно линией изображать движение какого-либо тела. Если по горизонтальной оси (оси абсцисс) изобразить расстояние в пространстве по одному направлению, а по вертикальной (оси ординат) - отложить время. Для каждого момента времени отмечаем положение тела. Если оно покоится в нашей "лаборатории", то есть его расположение не меняется, то это на нашем графике изобразится вертикальной линией. Если тело движется с постоянной скоростью - мы получим наклонную прямую. При произвольных движениях получается кривая линия. Такая линия получила название мировой линии. В общем случае надо вообразить, что тело может двигаться не только по одному направлению, но и по другим двум в пространстве тоже. Его мировая линия будет изображать эволюцию тела в четырехмерном пространстве-времени.

Осуществлена попытка показать, что пространство и время выступают как бы совершенно равноправно. Их значения просто отложены по разным осям. Но все же между пространством и временем есть существенная разница: в пространстве можно находится неподвижным, во времени - нельзя. Мировая линия покоящегося тела изображается вертикально. Тело как бы увлекается потоком времени вверх, даже если оно не движется в пространстве. И так обстоит дело со всеми телами; их мировые линии не могут остановиться, оборваться в какой-то момент времени, ведь время не останавливается. Пока тело существует, непрерывно продолжается и его мировая линия.

Как мы видим, ничего мистического в представлениях физиков о четырехмерном пространстве-времени нет. А.Эйнштейн как-то заметил: "Мистический трепет охватывает нематематика, когда он слышит о "четырехмерном", - чувство, подобное чувству, внушаемому театральным приведением. И тем не менее нет ничего банальнее фразы, что мир, обитаемый нами, есть четырехмерная пространственно-временная непрерывность".

Конечно, к новому понятию надо привыкнуть. Однако независимо от способности к наглядным представлениям физики-теоретики используют понятие о четырехмерном мире как рабочий инструмент для своих расчетов, оперируя мировыми линиями тел, вычисляя их длину, точки пересечения и так далее. Они развивают в этом четырехмерном мире четырехмерную геометрию, подобную геометрии Евклида. В честь Г.Минковского четырехмерный мир называют пространством-временем Минковского.

После создания в 1905 году теории относительности А.Эйнштейн в течение десяти лет упорно работал над проблемой - как соединить свою теорию с ньютоновским законом всемирного тяготения.

Закон тяготения в том виде, как его сформулировал И.Ньютон, несовместим с теорией относительности. В самом деле, согласно утверждению Ньютона сила, с которой одно тело притягивает другое, обратно пропорциональна квадрату расстояния между ними. Поэтому, если притягивающее тело сдвинется, расстояние между телами изменится и это мгновенно скажется на силе притяжения, влияющей на притягиваемое тело. Таким образом, по Ньютону, тяготение мгновенно передастся сквозь пространство. Но теория относительности утверждает, что этого быть не может. Скорость передачи любой силы, любого влияния не может превышать скорость света, и тяготение не может передаваться мгновенно!

В 1915 году Эйнштейн завершил создание новой теории, объединяющей теории относительности и тяготения. Он назвал ее общей теорией относительности. После этого ту теорию, которую Эйнштейн создал в 1905 году и которая не рассматривала тяготение, стали называть специальной теорией относительности.

Теория тяготения Эйнштейна утверждает, что тяготеющие тела искривляют вокруг себя четырехмерное пространство-время. Трудно наглядно вообразить себе простое пространство-время, а тем более сложно это сделать, когда оно еще и искривленное. Но для математика или физика-теоретика и нет нужды в наглядных представлениях. Для них искривление означает изменение геометрических свойств фигур или тел. Так, если на плоскости отношение длины окружности к ее диаметру равно 2?, то на искривленной поверхности или в "кривом" пространстве это не так. Геометрические соотношения там отличаются от соотношений в геометрии Евклида. И специалисту достаточно знать законы "кривой" геометрии, чтобы оперировать в таком необычном пространстве.

Тот факт, что четырехмерное пространство может быть искривленным, теоретически было открыто в начале прошлого века русским математиком Н.Лобачевским и в то же время венгерским математиком Я.Больяй. В середине прошлого века немецкий геометр Б.Риман стал рассматривать "искривленные" пространства не только с тремя измерениями, но и четырехмерные и вообще с любым числом измерений. С той поры геометрию искривленного пространства стали называть неевклидовой. Первооткрыватели неевклидовой геометрии не знали, в каких конкретно условиях может проявиться их геометрия, хотя отдельные догадки об этом высказывали.

Созданный ими и их последователями математический аппарат был использован при формулировке общей теории относительности.

Итак, согласно основной идее А.Эйнштейна тяготеющие массы искривляют вокруг себя пространство-время. Пространство воздействует на материю, "указывая" ей, как двигаться. Материя, в свою очередь, оказывает обратное действие на пространство, "указывая" ему, как искривляться.

В этом объяснении все необычно - и неподдающееся наглядному представлению искривленное четырехмерное пространство-время, и необычность объяснения силы тяготения геометрическими причинами. Физика здесь впервые напрямую связывается с геометрией. Знакомясь с успехами физики, чем ближе мы подходим к нашей эпохе, тем необычнее становятся ее открытия, а понятия все менее поддаются наглядным представлениям. И ничего не поделаешь! Природа сложна, и раз уж мы проникаем все глубже в ее тайны, то приходится мириться с тем, что это требует все больших усилий, в том числе и от нашего воображения. Наверное, слово "мириться" не очень здесь годится, скорее надо подчеркнуть, что становится все интереснее, хотя и труднее.

После создания своей теории Эйнштейн указал на эффект, касающийся времени. Теория Эйнштейна предсказывает: в сильном поле тяготения время течет медленнее, чем вне его. Это означает, например, что любые часы у поверхности Солнца идут медленнее, чем на поверхности Земли, ибо тяготение Солнца больше, чем тяготение Земли. По аналогичной причине часы на некоторой высоте над поверхностью Земли идут чуть быстрее, чем на самой поверхности.

 В 1968 году американский физик И.Шапиро измерил замедление времени у поверхности Солнца очень оригинальным методом. Он проводил радиолокацию Меркурия, когда тот, двигаясь вокруг Солнца, находился от него с противоположной стороны по отношению к Земле.

Радиолокационный луч проходил вблизи поверхности Солнца, и из-за замедления времени ему требовалось чуть больше на прохождение туда и обратно, чем на покрытие такого же расстояния, когда Меркурий находился вдали от Солнца. Эта задержка (около десятитысячной доли секунды) действительно была зафиксирована и измерена.

Итак, не может быть никакого сомнения в замедлении течения времени в гравитационном поле. В большинстве исследованных случаев изменение ничтожно мало, но астрономы и физики знают ситуации, когда разница в беге времени колоссальна.

2.4. "ДЫРЫ" В ПРОСТРАНСТВЕ И ВРЕМЕНИ

Черные дыры - это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет.

С какой силой притягивает центральная масса какое-либо тело, находящееся на ее поверхности? Если радиус массы велик, то ответ совпадал с классическим законом Ньютона. Но когда принималось, что та же масса сжата до все меньшего и меньшего радиуса, постепенно проявлялись отклонения от закона Ньютона - сила притяжения получалась пусть незначительно, но несколько большей. При совершенно фантастических же сжатиях отклонения были заметнее. Но самое интересное, что для каждой массы существует свой определенный радиус, при сжатии до которого сила тяготения стремилась к бесконечности! Такой радиус в теории был назван гравитационным радиусом. Гравитационный радиус тем больше, чем больше масса тела. Но даже для астрономических масс он очень мал: для массы Земли это всего один сантиметр.

В 1939 году американские физики Р.Оппенгеймер и Х.Снайдер дали точное математическое описание того, что будет происходить с массой, сжимающейся под действием собственного тяготения до все меньших размеров. Если сферическая масса, уменьшаясь, сожмется до размеров, равных или меньших, чем гравитационный радиус, то потом никакое внутреннее давление вещества, никакие внешние силы не смогут остановить дальнейшее сжатие. Действительно, ведь если бы при размерах, равных гравитационному радиусу, сжатие остановилось бы, то силы тяготения на поверхности массы были бы бесконечно велики и ничто с ними не могло бы бороться, они тут же заставят массу сжиматься дальше. Но при стремительном сжатии - падении вещества к центру - силы тяготения не чувствуются.

Всем известно, что при свободном падении наступает состояние невесомости и любое тело, не встречая опоры, теряет вес. То же происходит и со сжимающейся массой: на ее поверхности сила тяготения - вес - не ощущается. После достижения размеров гравитационного радиуса остановить сжатие массы нельзя. Она неудержимо стремится к центру. Такой процесс физики называют гравитационным коллапсом, а результатом является возникновение черной дыры. Именно внутри сферы с радиусом, равным гравитационному, тяготение столь велико, что не выпускает даже свет. Эту область Дж.Уиллер назвал в 1968 году черной дырой.

Название оказалось крайне удачным и было моментально подхвачено всеми специалистами. Границу черной дыры называют горизонтом событий. Название это понятно, ибо из-под этой границы не выходят к внешнему наблюдателю никакие сигналы, которые могли бы сообщить сведения о происходящих внутри событиях. О том, что происходит внутри черной дыры, внешний наблюдатель никогда ничего не узнает.

Итак, вблизи черной дыры необычно велики силы тяготения, но это еще не все. В сильном поле тяготения меняются геометрические свойства пространства и замедляется течение времени.

Около горизонта событий кривизна пространства становится очень сильной. Чтобы представить себе характер этого искривления, поступим следующим образом. Заменим в наших рассуждениях трехмерное пространство двумерной плоскостью (третье измерение уберем) - нам будет легче изобразить ее искривление. Пустое пространство изображается плоскостью. Если мы теперь поместим в это пространство тяготеющий шар, то вокруг него пространство слегка искривится - прогнется. Представим себе, что шар сжимается и его поле тяготения увеличивается. Перпендикулярно пространству отложена координата времени, как его измеряет наблюдатель на поверхности шара. С ростом тяготения увеличивается искривление пространства. Наконец, возникает черная дыра, когда поверхность шара сожмется до размеров, меньше горизонта событий, и "прогиб" пространства сделает стенки в прогибе вертикальными. Ясно, что вблизи черной дыры на столь искривленной поверхности геометрия будет совсем не похожа на евклидову геометрию на плоскости. С точки зрения геометрии пространства черная дыра действительно напоминает дыру в пространстве.

Обратимся теперь к темпу течения времени. Чем ближе к горизонту событий, тем медленнее течет время с точки зрения внешнего наблюдателя. На границе черной дыры его бег и вовсе замирает. Такую ситуацию можно сравнить с течением воды у берега реки, где ток воды замирает. Это образное сравнение принадлежит немецкому профессору Д.Либшеру.

Но совсем иная картина представляется наблюдателю, который в космическом корабле отправляется в черную дыру. Огромное поле тяготения на ее границе разгоняет падающий корабль до скорости, равной скорости света. И тем не менее далекому наблюдателю кажется, что падение корабля затормаживается и полностью замирает на границе черной дыры. Ведь здесь, с его точки зрения, замирает само время.

С приближением скорости падения к скорости света время на корабле также замедляет свой бег, как и на любом быстро летящем теле. И вот это замедление побуждает замирание падения корабля. Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из-за все большего и большего растягивания секунд на падающем корабле измеряется конечным числом этих все удлиняющихся (с точки зрения внешнего наблюдателя) секунд. По часам падающего наблюдателя или по его пульсу до пересечения границы черной дыры протекло вполне конечное число секунд. Бесконечно долгое падение корабля по часам далекого наблюдателя уместилось в очень короткое время падающего наблюдателя. Бесконечное для одного стало конечным для другого.

Вот уж поистине фантастическое изменение представлений о течении времени. То, что мы говорили о наблюдателе на космическом корабле, относится и к воображаемому наблюдателю на поверхности сжимающего шара, когда обрадуется черная дыра.

Наблюдатель, упавший в черную дыру, никогда не сможет оттуда выбраться, как бы ни были мощны двигатели его корабля. Он не сможет послать оттуда и никаких сигналов, никаких сообщений. Ведь даже свет - самый быстрый вестник в природе - оттуда не выходит. Для внешнего наблюдателя само падение корабля растягивается по его часам до бесконечности. Значит, то, что будет происходить с падающим наблюдателем и его кораблем внутри черной дыры, протекает уже вне времени внешнего наблюдателя (после его бесконечности по времени). В этом смысле черные дыры представляют собой "дыры во времени Вселенной".

 Конечно, сразу оговоримся, что это вовсе не означает, что внутри черной дыры время не течет. Там время течет, но это другое время, текущее иначе, чем время внешнего наблюдателя.

 Что же произойдет с наблюдателем, если он отважится отправиться в черную дыру на космическом корабле?

Силы тяготения будут увлекать его в область, где эти силы все сильнее и сильнее. Если в начале падения в корабле наблюдатель находился в невесомости и ничего неприятного не испытывал, то в ходе падения ситуация изменится. Чтобы понять, что произойдет, вспомним про приливные силы тяготения. Их действие связано с тем, что точки тела, находящиеся ближе к центру тяготения, притягиваются сильнее чем расположенные дальше. В результате притягиваемое тело растягивается.

В начале падения наблюдателя в черную дыру приливное растяжение может быть ничтожным. Но оно неизбежно нарастает в ходе падения. Как показывает теория, любое падающее в черную дыру тело попадает в область, где приливные силы становятся бесконечными. Это так называемая сингулярность внутри черной дыры. Здесь любое тело или частица будут разорваны приливными силами и перестанут существовать. Пройти сквозь сингулярность и не разрушиться не может ничто.

Но если такой исход совершенно неизбежен для любых тел внутри черной дыры, то это означает, что в сингулярности перестает существовать и время. Свойства времени зависят от протекающих процессов. Теория утверждает, что в сингулярности свойства времени изменяются настолько сильно, что его непрерывный поток обрывается, оно распадается на кванты. Здесь надо еще раз вспомнить, что теория относительности показала необходимость рассматривать время и пространство совместно, как единое многообразие. Поэтому правильнее говорить о распаде в сингулярности на кванты единого пространства-времени.

Современная наука раскрыла связь времени с физическими процессами, позвонило "прощупать" первые звенья цепи времени в прошлом и проследить за ее свойствами в далеком будущем.

Глава 3. НОВЫЕ ФИЗИЧЕСКИЕ ЗАКОНЫ

"Если нам действительно удастся построить всеобъемлющую физическую теорию, то со временем ее основные принципы станут доступны пониманию каждого. И тогда все мы, философы, ученые, специалисты и нет, сможем принять участие в дискуссии о том, как же так получилось, что существуем мы и существует Вселенная. И если будет найден ответ на этот "последний" вопрос, нам станет понятен замысел Бога". Так Стивен Хокинг закончил свою недавно вышедшую книгу "От большого взрыва до черных дыр. Краткая история времени".

Точка зрения Хокинга отражает традиционные представления о конечной цели физики. В прошлом ученые неоднократно утверждали, что все великие проблемы рано или поздно будут решены и теоретической физике наступит конец. В наши дни эту веру зачастую связывают с созданием "Теории Всего Сущего" - магического сверхзакона, из которого можно будет вывести все формы физической реальности - от элементарных частиц до атомов химических элементов, галактик и черных дыр. Такая теория свела бы Вселенную к формальному тождеству - абстрактному вневременному описанию.

Однако утверждению о том, что физика близка к своему завершению, можно придать и совершенно иной смысл. Нобелевская конференция 1989 года в колледже Густава Адольфа (Сент-Пол, штат Миннесота), была посвящена теме "Конец науки", но в эти слова вкладывали отнюдь не оптимистичное содержание. Организаторы конференции заявили: "Нас не покидает ощущение, что способность науки давать объективную картину действительности почти исчерпана". И далее: "Если же наука откажется от претензии открывать вневременные, универсальные законы и признает себя социальной и исторически ограниченной, то тогда уже нельзя будет утверждать, что она говорит о чем-то реальном, лежащем вне самой науки".

Основной тезис предложенной концепции прямо противоположный: великие законы не есть "всего лишь" социальные или исторические конструкции, хотя, разумеется, любые научные представления несут на себе печать своей эпохи. Можно сказать, что и классический идеал объективности, подразумевающий отрицание времени, тоже имел свои исторические корни. Это был дерзновенный идеал, возникший на почве западной культуры в XVII веке.

Идея объективной физической реальности, воплощенная в динамическом описании, была результатом первой успешной попытки включить время в математическую схему. Более двух веков - от Галилея до Больцмана - ушло на то, чтобы понять цену этого достижения: за него пришлось заплатить противоречием между симметричными фундаментальными законами физики и нарушением симметрии времени в реально протекающих процессах.

Современная физика рассматривает стрелу времени как одну из существенных черт нашего мира. В последние десятилетия несколько научных направлений оспаривали привилегию придать конструктивный смысл идее, согласно которой мы живем во временном мире.

Физические теории, которые сегодня строятся, - временные. Они охватывают законы и события, достоверность и вероятность. Вторжение времени в физику отнюдь не приводит к утрате объективности или познаваемости. Наоборот, оно открывает путь к новому, более глубокому пониманию.

Нарушение симметрии времени на микроскопическом уровне не есть результат отказа от идеала совершенного знания. К нему нас вынуждает динамика хаоса. Сначала неустойчивость возникла как ограничение, вызванное чувствительностью к начальным условиям, но теперь мы вышли за рамки "негативных" утверждений и пришли к формулировке законов природы, охватывающих хаос и стрелу времени. Изменение самого смысла слова "хаос" от нежелательного препятствия к самостоятельному объекту познания стало наиболее фундаментальным и неожиданным результатом исследования парадокса времени.

Включение в динамику вероятности и необратимости, конечно же, обусловлено глубинными процессами, идущими в самой науке. Стрела времени не проникла бы на фундаментальный уровень физики, не будь интенсивного поиска благоприятной возможности решения парадокса времени. Благоприятную возможность мы понимаем как исторический, идущий во времени диалог человека с природой. Диалог, в котором оперирование символами играет важную роль.

Символьное мышление порождает свой мир, который одновременно беднее и упрощеннее, богаче и содержательнее реального мира. Мысль, оперирующая символами, усиливает те аспекты классической и квантовой физики, которые делают акцент на симметрии во времени. Воплощенную в символах мысль можно сравнить с произведением искусства. Подобно ему, она способна возбуждать и чувство восхищения, и чувство неудовлетворенности. Она бросает нам вызов, побуждая идти вперед. При этом главный побудительный стимул концепции можно кратко выразить так: "Время не может возникнуть из вне времени. Вневременные законы нельзя считать окончательной истиной, ибо такая истина делает нас чужими в этом мире и сводит к простой видимости многообразие наблюдаемых явлений" (И.Р.Пригожин, И.Стенгерс).

Ту же неудовлетворенность выражали и другие физики. Так, Роджер Пенроуз в своей книге "Новый разум императора" заметил: "Непонимание нами фундаментальных законов физики не позволяет нам схватить суть разума в физических или логических терминах". Пенроуз также особо выделяет проблему времени. Он пишет: "По моему мнению, наша физическая картина мира в той своей части, что касается природы времени, чревата серьезными потрясениями, еще более сильными, чем те, что были вызваны теорией относительности и квантовой механикой". Однако, насколько можно судить, Пенроуз ожидает решения проблемы со стороны квантовой теории гравитации, которая должна будет объединить эти две теории.

Стратегия Пригожина более консервативна, поскольку он исходит из динамической неустойчивости, лежащей в фундаменте физики уже сегодня. Но Пенроуз прав в том, что нам действительно необходимо "новое понимание". Каждый период развития науки имеет свои ключевые нерешенные проблемы, вехи, указывающие направление дальнейшего развития. Величайшее удивление вызывает тот факт, что разрешение парадокса времени, возникшего в результате неудачной попытки Больцмана и Планка дать динамическую интерпретацию стрелы времени, позволило решить и два других парадокса - квантовый и, до некоторой степени, космологический.

И все же это можно было ожидать. Все три парадокса тесно связаны между собой. Исключение стрелы времени с необходимостью приводит к двойственному описанию Вселенной: с одной стороны, к микроскопическим, обратимым во времени законам, а с другой, - к феноменологическим законам с нарушенной симметрией времени. Здесь мы снова встречаемся с традиционным декартовским дуализмом между материей, характеризуемой протяженностью, и человеческим духом с его способностью мыслить. Общая теория относительности и квантовая механика служат хорошими примерами такого дуализма: первая стремится к геометрическому видению мира (утонченной форме декартовской протяженности); другая, с ее амплитудами вероятности, может быть уподоблена потенциальным, мыслимым возможностям (в отличие от актуальных, наблюдаемых вероятностей). Следует ли в таком случае рассматривать мир как потенциальную возможность для наших наблюдений?

Некоторые физики заходят так далеко, что в квантовой механике отводят человеческому разуму ключевую роль: по их мнению, мир, описываемый в терминах волновых функций, как бы жаждет обрести наблюдателя, который сможет актуализировать одну из его потенциальных возможностей.

В этом смысле организаторы Нобелевской конференции были правы: мы действительно подошли к "концу науки" - такой науки, которая связывает познание с открытием детерминистских вневременных законов, лежащих за рамками становления. Вспомним, что для Эйнштейна любое отклонение от этого идеала означало отказ от понимания мира, от основного назначения науки. Однако мы не можем по очевидным причинам согласиться с такими взглядами, сужающими смысл познания.

Там, где речь идет о живых существах, мы не отождествляем понимание с послушным выполнением правил - мы отказались бы признать настоящей кошку, поведение которой всегда было бы предсказуемым. А вот в физике мы зачастую думаем как раз наоборот. Нельзя не согласиться с Владимиром Набоковым, высказавшим такую мысль: "То, что полностью контролируемо, никогда не бывает вполне реальным. То, что реально, никогда не бывает вполне контролируемым".

Фундаментальные законы соединяли в себе два элемента, которые мы теперь в состоянии разделить. Один из них состоял в требовании подлинного диалога с природой, означающего, что человеческий разум должен строить математические зависимости, направляемые экспериментом. (С этой точки зрения, самая возможность универсальных законов природы не могла не вызывать удивление, что подтверждает скептический прием, оказанный в XVIII веке законам Ньютона.) Другой элемент - перспектива создания сверхнауки, которая должна заниматься изучением самих законов природы.

Весьма парадоксально, что западная наука, видевшая свою высшую цель в том, чтобы прислушиваться к фактам (в отличие от спекулятивных притязаний метафизики), как нельзя лучше соответствует тому, что Ричард Тарнас с полным основанием назвал "глубочайшей страстью западного ума к объединению с самой основой своего бытия". Открытие симметричных во времени детерминистских законов природы отвечало этому пристрастию, но ценой отторжения этой основы от созидающей временной реальности.

Ситуация изменилась: необратимость и вероятность стали объективными свойствами, отражающими тот факт, что физический мир не может быть сведен к отдельным траекториям (в ньютоновском описании) или волновым функциям (в шредингеровском). Новое представление об ансамблях не влечет за собой потери информации, напротив, оно позволяет более полно охватить свойства диссипативных хаотических систем.

Устойчивые и обратимые во времени классические системы, как мы теперь понимаем, соответствуют предельным, исключительным случаям (в квантовом мире положение сложнее, так как нарушение симметрии во времени есть необходимое условие для наблюдения микрообъектов - для перехода от амплитуд вероятности к самим вероятностям). Типичны именно неустойчивые хаотические системы, описываемые неприводимыми вероятностными законами, - они соответствуют подавляющему большинству случаев, представляющих физический интерес.

Причина успеха этого подхода кроется в обращении к новым математическим средствам. Хорошо известно, что задача, неразрешимая с помощью одного алгоритма, может стать разрешимой, если использовать другой. Например, вопрос о существовании корней алгебраического уравнения неразрешим в области вещественных чисел (оно может не иметь ни одного вещественного корня), но стоит перейти в область комплексных чисел, как ответ становится очень простым: каждое уравнение n-степени имеет n корней. Поиск соотношения между проблемами и средствами, необходимыми для их решения, - процесс открытый, способный служить великолепной иллюстрацией творческого созидания, свободного и в то же время ограниченного решаемой задачей.

Как ни удивительно, но теперь ученые в состоянии решить и некоторые, не поддававшиеся прежде конкретные проблемы. В классической динамике законы хаоса ассоциируются с интегрированием "неинтегрируемых" систем Пуанкаре, а предложенные методы дают более мощные алгоритмы. Также и в квантовой механике они позволяют устранить трудности, стоящие на пути решения задачи на собственные значения (реализации программы Гейзенберга).

Даже такая простая проблема, как рассеяние частиц в потенциальном поле, приводит к неинтегрируемым системам Пуанкаре (интегрируемые системы Пуанкаре - это достаточно простые системы, в которых взаимодействие элементов можно математически исключить; в уравнениях, описывающих их движение, прошлое и будущее неразличимы. Неинтегрируемые - более сложные системы, в которых взаимодействие элементов становится принципиально важным - в них появляется стрела времени).

Введение неприводимых вероятностных представлений потребовало рассмотрения так называемых "обобщенных пространств". Гильбертово пространство само уже есть обобщение конечномерных векторных пространств (его элементы - уже не векторы, а функции), но в нем мы можем использовать только достаточно "хорошие" функции. В обобщенных же пространствах можно оперировать также сингулярными, или обобщенными функциями (эти функции позволяют математически корректно описывать используемые в физике идеализированные представления. Например, равная единице плотность массы материальной точки, расположенной в начале координат или электрического заряда, выражается ?-функцией Дирака). Все это аналогично переходу от плоской евклидовой геометрии к искривленной римановой.

Другой существенный элемент теории - хронологическое, или временное, упорядочение. Гармонический осциллятор (классический или квантовый) обратим во времени. Но в неинтегрируемой системе возникает естественное упорядочение, задаваемое направленным течением самого процесса. Простейший пример - различие, возникающее в электродинамике между запаздывающими и опережающими потенциалами. Если устойчивые системы связаны с детерминистским, симметричным временем, то неустойчивые хаотические - с вероятностным, нарушающим равноправие прошлого и будущего.

Ограниченность традиционного описания в терминах отдельных траекторий или волновых функций не должна удивлять. Когда мы толкуем об архитектуре, мы имеем в виду не кирпичи, а здание в целом. Нередко приходится слышать, что история в наши дни ускорила свой бег; и в этом случае сказанное относится не к изменению природы отдельных людей, а к изменению отношений между ними из-за небывалого развития средств связи. Даже рождение новых идей любым человеком обусловлено тем, что он погружен в разделяемый многими мир значений, проблем и отношений. Другими словами, это есть свойство всей системы в целом.

Ситуация, с которой мы сталкиваемся в физике, много проще. Однако и там нам надлежит отказаться от мнения, будто время есть параметр, описывающий движение отдельных элементов системы. Адекватное физическое описание хаотических процессов, которое включило бы в себя необратимость и вероятность, возможно только при их целостном рассмотрении на уровне ансамблей.

3.1. ОБЪЕДИНЯЮЩАЯ РОЛЬ ХАОСА

Между фундаментальными законами физики и всеми остальными науками существовал разрыв. Мы глубоко убеждены в том, что предложенный подход дает более согласованное и единообразное описание природы, преобразующее взаимосвязи между науками. Теперь можно избежать взгляда, который, во имя сохранения основных уравнений, низводит время до иллюзии и сводит человеческий опыт к некоей субъективной реальности, лежащей вне природы. Хаос позволяет по-новому сформулировать то, что нам надлежит познать.

Устойчивые механические, а также конечные квантовые системы исторически послужили фундаментом для создания великих теоретических схем физики. Эти теории делали акцент на том, что сейчас представляется весьма частными случаями, и экстраполировали свои выводы далеко за пределы применимости каждого такого случая.

Мы сталкиваемся с двумя совершенно различными проявлениями хаоса - динамическим (на микроуровне) и диссипативным (на макроуровне). Первый находится на самом нижнем уровне описания природы, он включает в себя нарушение симметрии во времени и имеет выход в макроскопические явления, направляемые вторым началом термодинамики. Среди них - процессы приближения систем к равновесию, в которых проявляет себя диссипативный хаос.

 Мы знаем, что вдали от положения равновесия возможны разные аттракторы. Одни из них соответствуют периодическим режимам, другие - хаотичным. Все эти диссипативные эффекты представляют собой макроскопические реализации хаотической динамики, описываемой нелинейными уравнениями. Только через исследование нелинейных систем мы можем постичь внутреннее единство в неисчерпаемом разнообразии природных процессов - от беспорядочных, например излучения нагретого тела, до высокоорганизованных, идущих в живых существах.

"Хаос" и "материя" - понятия, тесно взаимосвязанные, поскольку динамический хаос лежит в основе всех наук, занимающихся изучением той или иной активности вещества, начиная с физической химии. Кроме того, хаос и материя вступают во взаимодействие еще и на космологическом уровне, так как самый процесс обретения материей физического бытия, согласно современным представлениям, связан с хаосом и неустойчивостью.

Эйнштейновская космология стала венцом достижений классического подхода, но в "стандартной модели" материя уже изначально есть, она лишь эволюционирует в соответствии с фазами расширения Вселенной. Однако неустойчивость возникает, как только мы учитываем эффект рождения материи и пространства-времени в состоянии сингулярности Большого взрыва. Предложенная модель не утверждает, что космологическая стрела времени рождается "из ничего" - она проистекает из неустойчивости квантового вакуума. Ведь направление времени, различие между прошлым и будущим никогда не были столь существенными, как при планковских значениях физических величин, то есть в тот момент, когда рождалась наша Вселенная.

 Можно ли пойти дальше? Если хаос - объединяющий элемент в необъятной области от классической механики до квантовой физики и космологии, то не может ли он послужить для построения Теории Всего Сущего (или сокращенно - ТВС)?

Здесь выскажем некоторые предостережения. Прежде всего, подчеркнем, что неустойчивость связана с вполне определенной формой динамики. Классический хаос качественно отличен от квантового хаоса, и мы пока весьма далеки от единой теории, охватившей бы и квантовую механику, и общую теорию относительности. Кроме того, "классическая" ТВС, как писал Хокинг, претендует на то, чтобы постичь замыслы Бога, то есть достичь фундаментального уровня описания, исходя из которого все явления (по крайней мере, в принципе) можно было бы вывести детерминистским способом. Мы же говорим о совершенно иной форме унификации - о такой ТВС, которая включила бы в себя хаос на самом глубоком уровне физики и не приводила бы к редукционистскому, вневременному описанию. Более высокие уровни допускались бы фундаментальным уровнем, но не следовали бы из него. Объединяющий элемент, вводимый хаосом, соответствует концепции открытого эволюционирующего мира, в котором, по словам Поля Валери, "время есть конструкция".

Как это часто бывает, новые перспективы приводят к переоценке прошлого. Карл Рубино заметил, что Аристотель отверг вечный и неизменный мир, описываемый Платоном. В своей "Этике" Аристотель доказывал, что акты нашего выбора не определяются нашим характером - наоборот, последовательные выборы делают нас теми, кто мы есть. Поэтому этика - не область дедуктивного знания, а практическая мудрость, искусство делать надлежащий выбор в условиях неопределенного будущего. Мы должны удержаться от платоновского искушения отождествлять этику с поиском незыблемых истин. Как учил Аристотель, "при изучении любого предмета не следует стремиться к большей точности, чем допускает природа предмета".

На протяжении веков такая максима рассматривалась как отрицательное суждение, как призыв к отказу от чего-то. Теперь же мы в состоянии увидеть здесь и позитивный смысл. Возьмем, к примеру, описанную трансформацию концепции хаоса. Покуда мы требовали, чтобы все динамические системы подчинялись одним и тем же законам, хаос был препятствием на пути познания. В замкнутом мире классической рациональности раскрытие законов природы могло приводить к интеллектуальному снобизму и высокомерию. В открытом мире, который мы сейчас начинаем постигать, теоретическое знание и практическая мудрость дополняют друг друга.

 В конце жизни Эйнштейну преподнесли сборник статей о нем, среди которых был очерк выдающегося австрийского математика Курта Гёделя. Этот ученый всерьез воспринял слова Эйнштейна о том, что необратимость времени - всего лишь иллюзия, и представил космологическую модель, в которой человек мог отправиться назад в свое прошлое; он даже подсчитал количество топлива, необходимое для такого путешествия.

Но у Эйнштейна идеи Гёделя не вызвали особого энтузиазма. В своем ответе Гёделю он заметил, что не может поверить, будто кому-нибудь удастся хотя бы "телеграфировать в свое прошлое", и даже добавил, что невозможность этого должна заставить физиков обратить внимание на необратимость времени, так как время и реальность нерасторжимо связаны между собой. Сколь бы сильным ни было искушение вечностью, путешествие назад во времени означало бы отрицание реальности мира - для Эйнштейна оказались неприемлемыми радикальные выводы из его же собственных взглядов.

Аналогичную реакцию мы находим у известного писателя Хорхе Луиса Борхеса. В рассказе "Новое опровержение времени" он описывает теории, объявляющие время иллюзией, и в заключение пишет: "И все же, и все же... Отрицание хронологической последовательности, отрицание себя, отрицание астрономической Вселенной - все это акты отчаяния и тайного сожаления... Время - та субстанция, из которой я состою. Время - это река, уносящая меня, но я сам река; это тигр, пожирающий меня, но я сам тигр; это огонь, поглощающий меня, но я сам огонь. Мир, к сожалению, реален; я, к сожалению, Борхес".

Отрицание времени было искушением и для Эйнштейна, ученого, и для Борхеса, поэта, - оно отвечало их глубокой экзистенциальной потребности. В письме к Максу Борну (1924 года) Эйнштейн заметил, что если бы ему пришлось отказаться от строгой причинности, то он предпочел бы стать "сапожником или крупье в игорном доме, нежели физиком". Наука, для того чтобы она имела в глазах Эйнштейна какую-то ценность, должна удовлетворять его потребности в избавлении от трагедии человеческого существования. "И все же, и все же..." Столкнувшись с доведенным до предела следствием из его собственных идей, ученый отступил.

Французский философ Эмиль Мейерсон усматривал в попытках свести природу к некоему тождеству основную движущую силу западной науки, причем парадоксальную, так как, подчеркивал философ, "стремление к тождеству уничтожает сам объект познания".

Что останется от нашего отношения к миру, если он сведется к некоторой геометрической схеме? В этом - наиболее полное выражение парадокса времени, с которым столкнулся Эйнштейн, Гёдель видел в способности двигаться вспять во времени победу человеческого разума, полный его контроль над нашим существованием. Но эта способность наглядно выявила все безумие такой концепции природы и разума, при которой снимаются все ограничения, направляющие созидание и творчество, ибо без них не было бы той реальности, которая бросает вызов нашим надеждам и планам.

Но и то, что полностью случайно, тоже лишено реальности. Мы можем понять отказ Эйнштейна принять случай в качестве универсального ответа на наши вопросы. Мы должны отыскать узкий проход, затерявшийся где-то между двумя концепциями, каждая из которых приводит к отчуждению: между миром, управляемым законами, не оставляющими места для новизны и созидания, и миром, символизируемым Богом, играющим в кости, - абсурдным, акаузальным, в котором нечего понимать.

Наши усилия могут служить иллюстрацией созидательной роли человека в науке, где, как ни странно, роль личностного начала часто недооценивают. Всякий знает, что если бы Шекспир, Бетховен или Ван Гог умерли вскоре после своего рождения, то никто другой не смог бы повторить их свершений. Верно ли аналогичное утверждение по отношению к ученым? Разве кто-нибудь еще не смог бы открыть классические законы движения, не будь Ньютона? Разве формулировка второго начала термодинамики нерасторжимо связана с личностью Клаузиуса?

Конечно, в противопоставлении литературы, музыки, живописи науке есть свой резон: наука - дело коллективное, решение научной проблемы должно удовлетворять определенным точным критериям. Однако эти свойства науки отнюдь не уменьшают ее творческого характера.

Осознание парадокса времени само по себе было выдающимся интеллектуальным достижением. Разве могла бы наука, стесненная рамками утилитаризма, даже мечтать об отрицании стрелы времени, если все природные явления свидетельствуют об обратном? Свободный полет фантазии привел к построению величественного здания классической физики, увенчанного затем двумя достижениями XX века - квантовой механикой и общей теорией относительности. В этом и состоит загадочная красота физики.

Но научное творчество - не только смелый полет мысли. Так, решение парадокса времени не могло быть только результатом фантазии, чьего-то убеждения или обращения к здравому смыслу. Он был решен с помощью теоремы Пуанкаре, в ходе изучения динамической неустойчивости, как следствие отказа от представлений об отдельных траекториях. Пригожин превратил этот недостаток в достоинство, хаос - в новое орудие исследования процессов, до сих пор остававшихся вне досягаемости для строгой науки. В этом - суть диалога с природой, в котором мы преобразуем то, что, на первый взгляд, кажется препятствием, в новую точку зрения, меняющую смысл отношений между познающим и познаваемым.

Описание природы, возникающее буквально на наших глазах, лежит между двумя противоположными картинами - детерминистским миром абстрактных схем и произвольным событийным миром. В этом срединном описании физические законы приводят к новой форме познаваемости, выражаемой неприводимыми вероятностными представлениями. Будучи связанными с неустойчивостью (микро- или макроскопической), законы природы оперируют с возможностью событий, но не делают отдельные события выводимыми, заранее предсказуемыми. Такое разграничение между тем, что выводимо и управляемо, и тем, что непредсказуемо и неконтролируемо, возможно, удовлетворило бы и Эйнштейна.

Прокладывая узкую тропинку между безжизненными законами и происходящими событиями, мы обнаруживаем, что значительная часть окружающего нас мира до сих пор "ускользала от расставленных наукой сетей" (выражение Уайтхеда). Теперь открылись новые горизонты и, конечно, встали новые нерешенные вопросы, где наш разум опять подстерегают опасности

1Архитектура и строительство
2Астрономия, авиация, космонавтика
 
3Безопасность жизнедеятельности
4Биология
 
5Военная кафедра, гражданская оборона
 
6География, экономическая география
7Геология и геодезия
8Государственное регулирование и налоги
 
9Естествознание
 
10Журналистика
 
11Законодательство и право
12Адвокатура
13Административное право
14Арбитражное процессуальное право
15Банковское право
16Государство и право
17Гражданское право и процесс
18Жилищное право
19Законодательство зарубежных стран
20Земельное право
21Конституционное право
22Конституционное право зарубежных стран
23Международное право
24Муниципальное право
25Налоговое право
26Римское право
27Семейное право
28Таможенное право
29Трудовое право
30Уголовное право и процесс
31Финансовое право
32Хозяйственное право
33Экологическое право
34Юриспруденция
 
35Иностранные языки
36Информатика, информационные технологии
37Базы данных
38Компьютерные сети
39Программирование
40Искусство и культура
41Краеведение
42Культурология
43Музыка
44История
45Биографии
46Историческая личность
47Литература
 
48Маркетинг и реклама
49Математика
50Медицина и здоровье
51Менеджмент
52Антикризисное управление
53Делопроизводство и документооборот
54Логистика
 
55Педагогика
56Политология
57Правоохранительные органы
58Криминалистика и криминология
59Прочее
60Психология
61Юридическая психология
 
62Радиоэлектроника
63Религия
 
64Сельское хозяйство и землепользование
65Социология
66Страхование
 
67Технологии
68Материаловедение
69Машиностроение
70Металлургия
71Транспорт
72Туризм
 
73Физика
74Физкультура и спорт
75Философия
 
76Химия
 
77Экология, охрана природы
78Экономика и финансы
79Анализ хозяйственной деятельности
80Банковское дело и кредитование
81Биржевое дело
82Бухгалтерский учет и аудит
83История экономических учений
84Международные отношения
85Предпринимательство, бизнес, микроэкономика
86Финансы
87Ценные бумаги и фондовый рынок
88Экономика предприятия
89Экономико-математическое моделирование
90Экономическая теория

 Анекдоты - это почти как рефераты, только короткие и смешные Следующий
Развод - это три президентских срока, а с женой они просто расстаются...
Anekdot.ru

Узнайте стоимость курсовой, диплома, реферата на заказ.

Обратите внимание, реферат по биологии "Культура и общество", также как и все другие рефераты, курсовые, дипломные и другие работы вы можете скачать бесплатно.

Смотрите также:


Банк рефератов - РефератБанк.ру
© РефератБанк, 2002 - 2016
Рейтинг@Mail.ru