Вход

Совершенствование технологии химической водоочистки на Балаковской атомной электростанции с использованием полимерных ионообменных материалов

Реферат* по физике
Дата добавления: 22 сентября 2009
Язык реферата: Русский
Word, rtf, 852 кб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы

Введение

Потребление энергии обеспечивает удовлетворение самых разнообразных потребностей человека: от насущных, связанных с получением и приготовлением пищи, обогрева жилищ, до духовных запросов (телевидение, радио, кино и т.п.). Однако большая часть энергии, вырабатываемой из природных энергоресурсов, используется в настоящее время в промышленности и на транспорте (около 65%). Следовательно, повышение энергообеспеченности общества является необходимым условием его ускоренного развития.

В настоящее время вода широко используется в различных отраслях промышленности в качестве теплоносителя, в том числе и в атомной энергетике. Но она не может применяться в теплоэнергетических установках без предварительной обработки, поскольку современные атомные электростанции (АЭС) в энергетическом цикле используют воду высокого качества. Оборудование современных АЭС эксплуатируется при высоких тепловых нагрузках, что требует жесткого ограничения толщины отложений на поверхностях нагрева по условиям температурного режима их металла в течении рабочей кампании. Такие отложения образуются из примесей, поступающих в циклы электростанции, в том числе и с добавочной водой, поэтому обеспечение высокого качества водных теплоносителей АЭС является важнейшей задачей. Использование водного теплоносителя высокого качества упрощает также решение задач получения чистого пара, минимизации скоростей коррозии конструктивных материалов котлов, турбин и оборудования конденсатно-питательного тракта.

При эксплуатации теплосилового оборудования могут произойти нежелательные различные явления, связанные с качеством воды и пара. Первое явление приводит к выделению из воды твердых веществ (отложений), оседающих большей частью на поверхности металла котла, турбины, подогревателей. Второе явление приводит к выделению взвешенных частиц (шлама), которые с течением времени могут образовывать отложения на поверхности раздела. Вода и пар при взаимодействии с элементами конструкций могут частично растворять их, а затем осаждать продукты коррозии. Кроме того, существуют химические соединения и газы, содержащиеся в воде в микро концентрациях и поступающие в контур АЭС с водой первичного заполнения, а также в результате внутриконтурных процессов коррозии. Наиболее распространенными из них являются растворенные в воде хлориды натрия и калия, сульфаты и карбонаты кальция, магния, кремниевая кислота, ионы железа, кислород, масла, нефтепродукты и др.

Таким образом, качество обработки воды на АЭС тесным образом связано с надежностью и экономичностью эксплуатации современного высокоинтенсивного котлотурбинного оборудования, с безопасностью ядерных энергетических установок.

Для удовлетворения разнообразных требований к качеству воды, потребляемой при выработке электрической и тепловой энергии, возникает необходимость специальной физико-химической обработки природной воды. Эта вода является, по существу, исходным сырьем, которое после надлежащей обработки используется в качестве исходного сырья на водоподготовительной установке, а также для других целей на АЭС. Добавочная вода, полученная на водоподготовительной установке после обработке с применением физико-химических методов очистки, направляется в контур для восполнения потерь пара и конденсата.

При эксплуатации современного энергетического оборудования АЭС используются разнообразные методы обработки воды. Так, приготовление добавочной воды для различных теплоиспользующих контуров осуществляется обычно в две основные стадии. На первой из них из природной воды удаляются главным образом взвешенные примеси, на второй вода подвергается очистки химическим методом (умягчение, обессоливание). Не эффективная очистка добавочной воды от коллоидных и грубодисперсных примесей, называемого предочисткой.

Предочистка осуществляется на основе методов, в результате реализации которых при дозировке специальных реагентов некоторых примесей выделяются в виде хлопьев. Основными технологическими процессами предварительной очистки воды являются коагуляция (укрупнение) коллоидных примесей и известкование, которые обычно совмещаются в одном аппарате – осветлителе – в целях улучшения суммарного технологического эффекта и снижения денежных затрат. Дополнительная очистка воды после осветлителя от грубодисперсных примесей производится фильтрационными методами, которые также относятся к предочистке воды.

Вода, прошедшая предочистку, практически не содержит в себе грубодисперсных примесей в значительной степени освобождена от коллоидных. Однако основная часть примесей в истинно – растворенном состоянии остается в этой воде и должна быть удалена из нее. Для этого применяют ионный обмен (обессоливание).

Цель работы в данном проекте это совершенствование технологии химической водоочистки на Балаковской АЭС с использованием полимерных ионообменных материалов.

1. Технологический раздел

1.1 Информационный анализ с обоснованием выбора технического решения

1.1.1 Способы подготовки воды

Наличие различных примесей в природной воде является причиной приготовления воды для подпитки и заполнения контуров АЭС на водоподготовительной установке в несколько стадий. Сначала из воды удаляют грубодисперсные и коллоидные частицы, а затем – ионизированные примеси.

Природная вода, разделяемая условно на атмосферную, поверхностную, подземную и морскую, всегда содержит различные примеси. Характер и количество, имеющихся в воде примесей, определяют качество воды, т.е. характеризует возможность использования ее для различных целей в промышленности и быту. Примеси поступают в воду, находящуюся в природном круговороте, из окружающей среды.

Количественный и качественный составы примесей, содержащихся в реках и водоемах, зависит от метеорологических условий и подвержены сезонным колебаниям. Так, весенний паводковый период, после вскрытия льда, воды содержат минимальное количество растворимых солей, однако характеризуются максимальным количеством взвешенных веществ, увлекаемых с поверхности почвы быстрыми потоками талых вод. В зимний период в результате питания поверхностного водотока подземными водами его солесодержания достигает максимума. В летнее время состав речной воды определяется соотношением в питании долей поверхностного и подземного стоков. Природные воды классифицируют солесодержанию. Различают пресную воду (солесодержание до 1 г/кг), солоноватую (солесодержание 1–10 г./кг) и соленую (солесодержание более 10 г./кг). Солесодержание определяется суммарной концентрацией всех катионов и анионов в воде. Важнейшим показателем, определяющим путь использования воды в теплоэнергетики, является жесткость воды. По значению общей жесткости природные воды классифицируются так: воды с малой жесткостью; воды со средней жесткостью; воды с повышенной жесткостью; воды с высокой жесткостью и воды с очень высокой жесткостью.

Существуют следующие виды очистки. Механические методы очистки включают в основном отстаивание, осветление и фильтрацию. Эти наиболее доступные приемы очистки от крупнодисперсных взвесей применяются как первая стадия в общей схеме очистке вод.

Физико-химические методы применяют для очистки от мелкодисперсных, коллоидных и растворенных веществ. Это флотация, коагуляция и флокуляция, экстракция растворителями, дистилляция и ректификация, адсорбция, обратный осмос и др. Принцип флотационной очистки заключается в образовании комплексов частица – пузырек воздуха, всплывании пузырьков и удалении образовавшегося слоя насыщенной примесями пены с поверхности воды.

Для очистки от растворенных примесей применяют обратный осмос, ультрафильтрацию, электродиализ, ионный обмен, абсорбцию, экстракцию, радиационно-химический метод.

Обратным осмосом или гиперфильтрацией называют процесс разделения истинных растворов продавливанием их через полунепроницаемые мембраны, которые пропускают воду, но задерживают гидратированные ионы солей и молекулы органических соединений. Ультрафильтрация – разделение растворов, содержащих высокомолекулярные соединения, мембранами, поры которых имеют диаметр 5–200 нм. Гиперфильтрацию производят с помощью полимерных мембран – ацетат целлюлозных, полиамидных и др.

Электродиализ заключается в направленном движении ионов под действием постоянного электрического тока. Для разделения и удаления ионов в установке имеются специальные катионитные и анионитные мембраны, изготовленные из ионообменных смол, которые пропускают ионы только одного знака заряда.

Для технического водоснабжения не требуется вода высокой чистоты, получаемая дионизацией. Здесь достаточно снижение обратным осмосом ее солесодержание в 15–20 раз по Na+, K+, SO-4, Cl- и в первую очередь удаление солей жесткости в 25–50 раз по Ca2+, Mg2+, что дает значительный эффект. Для водоочистки в этом случае наиболее оправданы безреагентные методы, при использовании которых не образуются токсичные отходы. Наиболее широко известный безреагентный метод упаривания, используемый при переработке жидких отходов, в водоподготовке для технического водоснабжения не применяется из-за больших энергетических затрат. Исключение составлявляла АЭС, где с помощью дистилляционной установки опресняли морскую воду. Более перспективными в этом случае являются мембранные методы, в частности, обратный осмос, получающий в последние годы все более широкое распространение для опреснения воды в тепловой и очистки от радионуклидов в ядерной энергетике. В последнем случае обратный осмос значительно превосходит по эффективности другой мембранный метод-электродиализ.

Водоподготовка на обратноосмотических фильтрах не требует в отличие от очистки отходов получения высокого солесодержания в концентрате и, следовательно, позволяет использовать низкое давление и более простые аппараты. Концентраты при водоподготовке содержат только исходные соли природных вод и при сбросе в окружающую среду не вносят дополнительных загрязнений. После обратноосмотического опреснения существенно снижается нагрузка на ионообменные фильтры при получении деинизированной воды для теплоносителей. Кроме того, при снижении солесодержания технической воды увеличивается ресурс оборудования системы технического водоснабжения вследствие уменьшения коррозии трубопроводов и отложений на их внутренних стенках солей жесткости. Главным эффектом является снижение солевой нагрузки на установки спецводоочистки (установки очистки жидких отходов). Таким образом, соли извлекаются еще до их попадания в общую среду с радионуклидами.

На основании разработанных и использованных в НИТИ им. А.П. Александрова установок водоподготовки и спецводоочистки можно сделать вывод, что обратноосмотическая очистка технической воды существенно улучшает условия эксплуатации и снижает соленость. Дополнительные затраты на предварительное обессоливание технической воды компенсируются снижением расходов на переработку отходов и в конечном итоге способствуют сокращению объема твердых отходов вследствие уменьшения содержания балластных солей, подлежащих захоронению. В технологии переработки отходов существенным фактором снижения энергозатрат является операция их предварительного обратноосмотического концентрирования.

Разработанные модульные мембранно-сорбционные установки, применяемые в настоящее время для очистки маломинерализованных низко активных отходов, имеют производительность 0,5–2 м3/ч при сравнительно небольших габаритах и массе (размер обратноосмотического модуля 1050х700х1800 мм, масса нетто 180 кг.) Они могут обеспечивать в необходимых объемах, как водоподготовку, так и спецводоочистку (до 4000–15000 м3/год). В первом случае достаточными являются только мембранные модули.

Ионообменный способ очистки сточных вод, содержащих растворенные примеси минерального и органического происхождения, получает все большее распространение, так как он позволяет регенерировать ценные вещества и глубоко очищать воду перед ее повторным использованием в оборотных системах водоснабжения. Ионообмен целесообразен как завершающая стадия доочистки и корректировки оборотной воды, а также для полного извлечения и утилизации токсичных веществ.

Адсорбционный метод – один из наиболее доступных и эффективных способов глубокой очистки от растворенных органических веществ. Применяя активные сорбенты, можно полностью очистить воду от органических примесей, даже при весьма малых их концентрациях, когда другие приемы очистки неэффективны.

Химические (реагентные) методы применяют главным образом для обезвреживания и удаления неорганических примесей. К реагентным методам относятся нейтрализация кислот и щелочей, переведение ионов в малорастворимые соединения, соосаждение неорганических веществ. Химические методы характеризуются высокими расходными коэффициентами по реагентам и громоздкой аппаратурой, особенно отстойной. Помимо небольших экономических показателей недостатком реагентного метода является образование новых соединений – осадков, которые приходится направлять в накопители осадков и на шламовые площадки, т.е. дополнительно загрязнять почву и занимать земельные участки отвалами.

В результате рассмотренных способов очистки выбираем ионообменную очистку, так как именно этот способ позволяет более глубоко очищать воду. Сначала из воды удаляют грубодисперсные и коллоидные частицы, а затем – ионизированные примеси (химическим обессоливанием воды).

Осветление воды, называемое предварительной очисткой, осуществляют в основном осаждением, в результате которого из воды выделяются примеси в виде осадка. К осаждению относят процессы коагуляции и известкования, проводимые, как правило, в осветлителе. Из обрабатываемой воды выделяется основная масса осадка, состоящего из хлопьевидных образований с включенными в них коллоидными и грубодисперсными примесями. Окончательную очистку воды от осадка производят фильтрованием, оборудование для которого также относится к предочистке. Физико-химический процесс укрупнения коллоидных частиц за счет их слипания, который завершается выделением вещества в осадок, удаляемый осаждением или фильтрованием, называется коагуляцией.

Обработку воды гашеной известью – гидрооксидом кальция – называют известкованием. При известковании достигают частичного умягчения воды. Коагуляцию и известкование осуществляют в осветлителях.

Вода, прошедшая обработку в осветлителях, содержит 10–20 мг/кг грубодисперсных примесей, которые должны быть удалены перед последующими технологическими стадиями водообработки. В период весенних и осенних паводков в 1 кг воды поверхностных водоемов содержание грубодисперсных примесей колеблется от несколько единиц миллиграммов до нескольких сотен, эти примеси должны быть удалены при использовании воды для технических целей фильтрованием.

1.1.2 Конструкции фильтров

В реальных условиях работы механических фильтров, диаметр зерен фильтрующей загрузки которых составляет примерно 0,5 мм и более (крупнозернистые загрузки), высота фильтрующего слоя близка к минимальной высоте фильтрующего слоя, хотя высота слоя в фильтрах составляет иногда около 2 м. Эти фильтры получили название насыпных фильтров.

При уменьшении диаметра поровых каналов (диаметра зерен фильтрующей загрузки) можно создать условия чисто поверхностного фильтрования. В этом случае не требуется высоких слоев фильтрующего материала. Тонкослойные фильтры с мелкозернистым фильтрующим слоем (dср ~ 0,05 мм) называют намывными фильтрами. Поскольку реальные взвеси имеют определенный спектр дисперсности, нижняя граница которого всегда меньше среднего диаметра поровых каналов загрузки намывных фильтров, рассмотренный выше механизм имеет место и при работе намывных фильтров. Разница между намывными и насыпными фильтрами заключается в том, что при работе последних задерживаемая взвесь скапливается выше верхней границы загрузки только к концу работы фильтра, а при работе первых – с самого начала, т.е. насыпные фильтры, работают в основном режиме объемного фильтрования, постепенного переходящего в поверхностное, а намывные работают, главным образом, в режиме поверхностного фильтрования, сопровождающегося объемным.

Намывные механические фильтры получили свое название от процесса загрузки в них фильтрующего материала, который перед началом фильтрования подается на намывной фильтр в виде концентрированной суспензии. Твердые частицы этой суспензии отделяются от ее жидкой фазы на специальной фильтровальной перегородке. Накапливаясь на последней, частицы суспензии создают слой определенной высоты, зависящий от концентрации и времени прокачки исходной суспензии. Процесс этот принято называть намывом. По окончании намыва в фильтр подают очищаемую воду. Задержание взвешенных в этой воде частиц происходит уже не на фильтровальной перегородке, а на ранее намытом фильтрующем слое.

Резкое количественное изменение геометрических характеристик фильтрующих слоев в намывных механических фильтрах неизбежно влечет за собой качественное изменение процесса задержания взвешенных в очищаемой воде частиц.

Обычно максимальный размер частиц, взвешенных в контурных водах АЭС, для очистки которых чаще всего используют намывные фильтры, не превышает (1,5 – 2).10-6 м. Поэтому при работе намывных фильтров наряду с образованием конгломератов из задерживаемых на поверхности поровых каналов частиц улавливаемой взвеси возможно также и образование <<сводиков>> из крупных частиц взвести (dr > 0,1 dэ) непосредственно на входе в поровые каналы слоя. Кроме того, из-за малой скорости фильтрования, применяемой в намывных механических фильтрах, рост конгломератов может происходить вплоть до полной закупорки порового канала слоя. Следовательно, начавшийся на высоте 3,210-3 мм рост конгломератов приведет к полной закупорке поровых каналов практически уже в лобовом слое. Из изложенного вытекает основная особенность задержания взвесей мелкодисперсным слоем: процесс протекает, главным образом, по механизму поверхностного фильтрования.

Задерживаемые мелкозернистым фильтрующим слоем частицы образуют на его поверхности собственный фильтрующий слой, называемый вторичным фильтрующим слоем, который сразу же становится основным источником гидравлического сопротивления. Темп рост сопротивления возрастает с ростом скорости фильтрования и концентрации взвешенных частиц в очищаемой воде. Поэтому при больших концентрациях частиц, характерных, например, для осветленной после коагуляции или известкования воды, применение намывных фильтров нецелесообразно из-за слишком быстрого роста перепада давления, cводящего к минимуму период работы фильтра. Небольшие периоды работы фильтра неэкономичны не только потому, что требуют для непрерывной очистки потока воды большого количества резервных площадей фильтрования, подключаемых к работе в момент смыва и намыва материала на основные фильтры, но также и из-за увеличенного при этом расхода фильтрующего материала, который на намывных фильтрах вследствие трудности отделения его от уловленных частиц взвеси используется однократно. Поэтому-то намывные фильтры и применяются только для очистки конденсатов и контурных вод, где концентрация твердых продуктов коррозии железа не превышает в период нормальной работы 100 – 50 мкг/кг.

1.1.3 Ионообменные материалы

Ионообменные материалы, нашедшие в настоящее время широкое применение в технологии водоприготовления для нужд АЭС, представляют собой синтетические высокомолекулярные соединения кислого или основного характера. Материалы эти получают либо путем поликонденсации исходных мономеров, либо путем их сополимеризации.

1.2 Патентные исследования

Задачи патентных исследований: исследование тенденций развития химической водоочистки ионообменным способом на Атомной Электростанции с целью обоснования технико-экономических показателей и уменьшения объема отработанной смолы.

RU (11) 2239605 (13) С1

(51) 7 С 02 F 1/42 // С 02 F 103:04

(21) 2003129557 // 15 (22) 07.10.2003

(24) 07.10.2003

(72) Зройчиков Н.А. (RU), Храмчихин А.М. (RU), Чернов Е.Ф. (RU), Никитин И.В. (RU)

(73) Общество с ограниченной ответственностью фирма «Партнер С.П.» (RU)

Адрес для переписки: 115569, Москва, ул. Домодедовская, 6, корп. 2, кв. 84, И.В. Никитину

(54) Способ очистки воды от анионов сильных кислот

(57) Способ очистки воды от анионов сильных кислот (соляной, серной, азотной) на пористом анионите смешанной основности, отличающийся тем, что используют анионит, получающийся последовательными реакциями хлорметилирования и аминирования макропористого сополимера стирола и дивинилбензола, в котором содержание групп низкой и высокой основности соответствует соотношению 9–17:1, а значение рН обрабатываемой воды не должно превышать 5,0.

RU (11) 2241542 (13) С1

(51) 7 В 01 J 49/00, С 02 F 1/42 //C 02 F 103:04

(21) 2003127008/15 (22) 05.09.2003

(24) 05.09.2003

(72) Пантелеев А.А. (RU), Углов С.А. (RU), Громов С.Л. (RU), Федосеева Е.Б. (RU)

(73) ЗАО «Научно-производственная компания «Медиана-Фильтр» (RU)

Адрес для переписки: 193318, Санкт-Петербург, ул. Подвойского, 14, корп. 1, кв. 741, пат. пов. В.А. Кузнецову

(54) Способ регенерации ионитов

(54) 1. Способ регенерации ионитов в фильтрационных процессах типа «UPCORE», включающий в себя стадию зажатия слоя ионита потоком жидкой среды, направленным снизу вверх, стадии регенерации, гравитационного осаждения и отмывки ионитов от остатков регенерирующего раствора, отличающийся тем, что перед стадией зажатия через фильтр в направлении сверху вниз пропускают обрабатываемую жидкость с линейной скоростью, превышающей среднее эксплутационное значение на 5–250%.

RU (11) 2220907 (13) C2

(51) 7 C 01 D 7/18, G 05 D 21/00

(21) 2001118473/15 (22) 04.07/2001

(24) 04.07.2001

(72) Молчанов В.И., Олесюк В.И., Кухтенков К.М., Баранов А.А., Титов В.М., Воронин А.В., Гареев А.Т., Карпов В.Г.

(73) Государственный научно-исследовательский и проектный институт основной химии, Открытое акционерное общество «?»

Адрес для переписки: 61002, г. Харьков-2, ул. Мироносицкая НИОХИМ, зам. директора В.Ф. Аннопольскому

(54) Устройство для автоматического контроля и распределения потоков известкового молока из общего коллектора по параллельно работающим аппаратам

(57) Устройство для автоматического контроля и распределения потоков известкового молока из общего коллектора по параллельно работающим аппаратам, содержащее датчики расхода известкового молока, связанные с регуляторами расхода известкового молока регулятор значений рН в жидкости из смесителя, отличающееся тем, что к выходу датчика общего расхода известкового молока формирующие цепочки подключены регуляторы расхода известкового молока и регулирующие органы по основному и дополнительному потокам, формирующая цепочка для основного потока состоит из блока слежения-запоминания и блока суммирования, формирующая цепочка для дополнительного потока состоит из блока слежения-запоминания, блока суммирования и блока запоминания, выход которого подключен C 02 F 1/64, 1/42 // (C 02 F 1/42, 101:20), 103:36

(21) 2002100366/15 (22) 08.06.2000

(24) 08.06.2000

(31) 9907790

(32) 15.06.1999 (пп. 1–13)

(33) FR

ко второму входу сумматора в формирующей цепочке основного потока, второй вход регулятора расхода известкового молока по основному потоку подключен к сумматору, входы которого связаны с выходами датчика расхода фильтровой жидкости и регулятора значений рН в жидкости из смесителя, второй вход регулятора расхода известкового молока по дополнительному потоку подключен к сумматору, два входа которого связаны с выходами регулятора концентрации NH3 в парогазовой смеси из испарителя и формирующей цепочки расхода известкового молока по основному потоку, входы блоков слежения-запоминания и переключения связаны с выходами командного блока мультивибратора, управляющего процессом формирования переменных для регуляторов расхода известкового молока по основному и дополнительному потокам и переключателя, закрывающего заслонку на дополнительном потоке.

RU (11) 2226429 (13) C2

(51) 7 B 01 J 39/12, 38/74, C 07 C 51/31,

(85) 15.01.2002

(86) PCT/FR 00/01587 (08.06.2000)

(87) PCT/WO 00/76661 (21.12.2000)

(72) Готтелан Патрис (FR), Ложетт Себастьян (FR)

(73) Родиа Полиамид Интермедиэйтс (FR)

(74) Егорова Галина Борисовна

Адрес для переписки: 129010, Москва, ул. Б. Спасская, 25, стр. 3, ООО «Юридическая фирма Городисский и Партнеры», пат. пов. Г.Б. Егоровой

(54) Селективное отделение железа обработкой ионообменной смолой, содержащей группы дифосфоновых кислот

(57) 1. Способ селективного отделения железа, содержащегося в растворе, в присутствии ионов ванадия и других ионов металлов, содержащихся в катализаторах окисления органических соединений, заключающийся в том, что раствор обрабатывают ионообменной смолой, содержащей группы дифосфоновой кислоты, в кислой среде.

Способ по п. 1, отличающийся тем, что ионообменная смола содержит сульфонильные группы.

1. Способ по п. 1 или 2, отличающийся тем, что расвор, содержащий ионы металлов, имеет рН ниже 3.

2. Способ по любому из пп. 1–3, отличающийся тем, что упомянутый раствор получен в процессе окисления органических соединений в присутствии катализатора.

3. Способ рециркулирования катализатора на реакцию окисления органического соединения, протекающего в присутствии катализатора, содержащего металлические элементы, в том числе ванадий, заключающийся в том, что раствор, содержащий катализатор и полученный после отделения по крайней мере соединений, образующихся после окисления, обрабатывают ионообменной смолой, содержащей группы дифосфоновой кислоты, для связывания железа, находящегося в этом растворе, и таким образом обедненный железом раствор рециркулируют на реакцию окисления в качестве каталитического раствора.

1. Способ по п. 5, отличающийся тем, что ионообменная смола содержит сульфонильные группы.

2. Способ по п. 5 или 6, отличающийся тем, что реакцию окисления проводят с использованием в качестве окисляющего агента соединения, выбираемого из группы, включающей кислород, воздух, пероксиды, перекись водорода, азотную кислоту.

3. Способ по одному из пп. 5–7, отличающийся тем, что реакцией окисления является реакция окисления спиртов и / или кетонов до карбоновых кислот.

4. Способ получения адипиновой кислоты окислением циклогексанола и / или циклогексанона в присутствии катализатора на основе металлических элементов, отличающийся тем, что он состоит в обработке раствора, образующегося в процессе окисления и содержащего катализатор, после отделения образовавшейся адипиновой кислоты с помощью ионообменной смолы, содержащей дифосфоновые группы, с целью понижения в этом растворе содержания железа и повторного использования этого раствора с пониженным содержанием железа в качестве катализатора реакции окисления.

5. Способ по п. 9, отличающийся тем, что катализатором окисления является катализатор на основе меди и ванадия.

6. Способ по п. 9 или 10, отличающийся тем, что содержащий катализатор раствор является раствором азотной кислоты, получаемым при элюировании ионообменной смолы, которая позволяет отделить ионы металлов от карбоновых кислот, образующихся в качестве побочных продуктов реакции окисления циклогексанола и / или циклогексанона до адипиновой кислоты.

7. Способ по любому из пп. 9–11, отличающийся тем, что ионообменную смолу, содержащую группы дифосфоновой кислоты, регенерируют кислотным раствором.

8. Способ по п. 12, отличающийся тем, что регенерацию смолы проводят с помощью кислоты, отличной от азотной, после чего эту регенерированную смолу перед ее повторном использованием кондиционируют раствором азотной кислоты или промывкой водой.

1.3 Характеристика исходного сырья, вспомогательных материалов и готовой продукции

Вода – самое распространенное химическое соединение. Угол связи в молекуле воды НОН равен 1050; межъядерное расстояние О ↔ Н составляет 0,97 А0; Н ↔ Н – 1,63 А0 дипольный момент равен 1,87х 10-18 эл. ст. ед. Сильный дипольный характер молекул воды обуславливает особую склонность воды образовывать продукты присоединения.

Химически чистая вода является очень слабым электролитом и диссоциирует на ионы Н+ и ОН- в незначительном количестве Н2О ↔ Н+ +ОН- Вода может проявлять и кислые и основные свойства. Одним из основных показателей качества воды является водородный показатель. Растворы, в которых концентрация водородных и гидроксильных ионов одинаковы и каждая из них равна 10-7 г– ион /кг называется нейтральными. В кислых растворах преобладает концентрация водородных ионов, в щелочных – гидроксильных, то есть степень кислотности или щелочности можно характеризовать концентрацией водородных ионов. Для выражения кислотности или щелочности пользуется водородным показателем.

Являясь слабым электролитом, вода способна проводить электрический ток. Удельная электропроводимость водорода характеризует содержание в воде различных примесей, находящихся в ионном состоянии и зависит от температуры.

Другим показателем, характеризующим свойства водных растворов является окислительно-восстановительный потенциал. Он характеризует окислительно-восстановительное равновесие в водном теплоносители, влияет на ряд процессов, в частности на режим образования и растворение оксидной пленки (или железо-окисных отложений) при постоянном значении рН. Абсолютно чистой воды практически не существует. Вода является различных веществ неорганического и органического характера, которые попадают в тракт электростанции и создают среду, оказывающую влияние на работу элементов оборудования.

Наличие в воде различных примесей может приводить к образованию в тепловых агрегатах накипных отложений и коррозии.

Исходной водой для ХВО является вода Саратовского водохранилища. На ХВО вода поступает из насосной пруда охладителя, стоящей на реке Березовка.

В режиме обессоливания достигается следующее качество обессоленной воды:

1) удельная электропроводимость Н-катионитовой пробы (при температуре 250С);

2) соединения натрия – 5 мкг/кг (в пересчете на натрий);

3) кремниевая кислота – 15 мкг/кг (в пересчете кремниевой кислоты);

4) соединения железа – 15 мкг/кг (в пересчете на железо);

5) соединения меди –5 мкг/кг (в пересчете на медь).

Вспомогательные материалы.

В качестве фильтрующего материала во всех ионообменных фильтрах используются ионообменные смолы: катиониты и аниониты. Они представляют собой высокомолекулярные органические вещества трехмерной структуры, практически нерастворимые в воде и обратимо обменивающие ионы, входящие в их состав, на эквивалентное количество других ионов того же знака, находящиеся в растворе. При существенных различиях в химическом составе и структуре для всех ионитов характерен один и тот же принцип построения: они имеют каркас, несущий избыточный заряд, и подвижные противоионы. У ионообменных смол каркас, называемый матрицей, состоит из высокополимерной пространственной сетки углеводородных цепей в отдельных местах, которой закреплены функционально-активные гидрофильные группы. Между углеводородными цепями есть поперечные связи (мостики), препятствующие разъединению цепей, но допускающие их деформацию.

С течением времени в слое работающего материала в результате его постепенного разрушения может накапливаться все больше и больше мелкой фракции, от которой слой ионита частично освобождается при взрыхлении. Основной причиной разрушения товарных фракций ионитов являются знакопеременные напряжения, возникающие в зерне ионита при его работе. В рабочем цикле зерна ионитов сжимаются. При проведении регенерации зерна ионитов расширяются. И набухание, и сжатие происходят под действием осматического давления воды. Это в свою очередь приводит к появлению в зерне микротрещин, которые в конечном результате приводят к раскалыванию зерна ионита. К раскалыванию треснувшего зерна ведут также и механические нагрузки, происходящие в процессе трения зерен друг о друга или о стенки аппаратов или трубопроводов, а также имеющие место при взрыхлении или гидравлических перегрузках ионитов.

Способность ионитов сохранять неизменным товарный фракционный состав принято характеризовать двумя показателями: осмотической стабильностью и механической прочностью. Оба эти показателя являются крайне важными, поскольку измельчение ионитов и последующий постоянный вынос мелких фракций при взрыхлении слоя сокращают срок их использования и повышают стоимость очищаемой воды.

Способность к ионному обмену обусловлена наличием в ионитах функциональных групп. У катионов эти группы носят кислотный характер, у анионитов – основной. По сродству функциональных групп катионы и анионы делятся на сильные и слабые. Катионы, содержащие сульфогруппы, являются сильнокислотными, называются универсальными и маркируются буквами КУ. Катиониты, содержащие карбоксильные группы, являются слабокислотными, называются буферными и маркируются буквами КБ. Сильнокислотные катиониты осуществляют обмен ионов в широкой области значений рН, тогда как слабокислотные в кислой области резко уменьшают способность ионов к обмену. Анионы, содержащие аминогруппы, являются слабоосновными и маркируются буквами АВ. Слабоосновные аниониты успешно осуществляют ионный обмен лишь в кислых средах, тогда как у высокоосновных обмен анионов происходит в широкой области значений рН.

1.4 Описание технологического процесса

Одним из основных факторов, способствующих повышению эффективности процессов осаждения, является подогрев воды. Основными причинами благоприятного воздействия повышенной температуры воды являются ускорение процессов кристаллизации твердой фазы, улучшение отделения осадка вследствие уменьшения вязкости воды и возрастание скорости химических реакций.

Исходная вода из реки Березовка подается на собственные нужды АЭС, в том числе для приготовления добавочной воды на химводоочистку. Вода проходит предварительный подогрев на теплообменниках «грязного» конденсата. На этой стадии происходит теплообмен между исходной (сырой) водой и конденсатом дренажных баков с машзалов энергоблоков №1–4, который откачивается в бак «грязного» конденсата ХВО. Далее производится нагрев исходной воды паром с коллектора собственных нужд АЭС на подогревателе сырой воды () до температуры 30±10С, после чего исходная вода подается на осветлители ВТИ-400 () производительностью 400 м3/ час, где и происходит процесс умягчения воды.

Исходная вода по двум трубопроводам диаметром 600 мм входит в объединенный вспомогательный корпус помещения химводоочистки. Проходит последовательный подогрев в охладителях грязного конденсата () и охладителях конденсата (). Они представляют собой кожухотрубные двухходовые теплообменники вертикального типа, основными узлами которого являются: корпус, трубная система; входная поворотная и выходная водяные камеры.

Внутри корпуса аппарата расположены стержни и перегородки для увеличения площади теплоотдачи конденсата подогреваемой воды. Корпус имеет сильфонный компенсатор, предназначенный для компенсации тепловых расширений корпуса. Внутри корпуса аппарата на входе конденсата в охладитель находится пароотбойный щит, предназначенный для равномерного распределения потока внутри межтрубного пространства.

Окончательный подогрев исходной воды происходит в подогревателях сырой воды (). Представляет собой кожухотрубный теплообменник вертикального типа с поверхностью нагрева 125 м2, основными узлами которого является: корпус, трубная система, верхняя и нижняя водяные камеры. Корпус состоит из цилиндрической обечайки, к нижней части которой приварено штампованное элептическое днище, а верхней части – фланец для соединения с трубной системой и верхней водяной камерой. В верхней части цилиндрической обечайки расположен патрубок подвода пара, а ниже располагается патрубок подвода конденсата греющего пара из подогревателей с более высоким давлением (отглушек), патрубок отсоса воздуха, муфты для подсоединения водоуказательного стекла, а также патрубки для подсоединения датчика регулятора уровня конденсата в корпусе. К элептическому днищу приварен фланец, предназначенный для подсоединения трубопровода выхода конденсата. Трубная система состоит из двух трубных досок, каркаса, прямых теплообменных труб, концы которых развальцованы в трубных досках. Каркас трубной системы имеет поперечные сегментные перегородки, которые направляют поток пара в корпусе и, одновременно, служат промежуточными опорами для теплообменных трубок. Для предохранения теплообменных трубок от разрушительного действия струи пара против пароподводящего патрубка установлен отбойный щит.

Верхняя водяная камера состоит из цилиндрической обечайки, к верхней части которой приварена штампованная эллиптическое днище, а к нижней части приварен фланец для соединения с трубной системой и корпусом. Водяная камера снабжена патрубками подвода и отвода сырой (технической) воды. Внутренний объем камеры разделен перегородками на отсеки, благодаря которым вода совершает необходимое количество ходов.

Нижняя водяная камера состоит из штампованного эллиптического днища и фланца для соединения с трубной системой. В нижней части днища имеется муфта.

Начальный этап очистки воды – предочистка – необходим для улучшения технико-экономических показателей последующих этапов очистки воды, а также потому, что при отсутствии предочистки применение многих методов на последующих ступенях очистки встречает значительные затруднения.

Наличие различных примесей в исходной воде является причиной приготовления воды для подпитки и заполнения контуров в несколько стадий. Сначала из воды удаляются грубодисперсные и коллоидные частицы методом осаждения, к которому относят процессы коагуляции и известкования, проводимые в осветлителе.

В настоящее время предочистка воды производится в осветлителях со взвешенным слоем осадка. Вся масса частиц твердой фазы в этом слое находится в состоянии динамического равновесия с подаваемым снизу потоком воды. Взвешенные в потоке частицы твердой фазы находятся в непрерывном хаотическом движении, однако сам взвешенный слой в целом неподвижен.

Исходная вода поступает через распределительное устройство в воздухоотделитель, оттуда по отводящей линии через регулирующее сопло направляется в смесительную часть нижнего конуса осветлителя. Сюда же подается известковое молоко и раствор коагулянта. Перемешивание воды и реагентов обеспечивается за счет тангенциального подвода воды в коническую часть корпуса. Регулирующее сопло позволяет менять скорость поступления воды в смесительную часть корпуса. По мере подъема обрабатываемой воды в осветлителе вращательное движение гасится благодаря наличию вертикальных успокоительных перегородок и смесительной решетки. В результате взаимодействия введенных реагентов с обрабатываемой водой выделяется осадок (шлам). Шлам поддерживается во взвешенном состоянии восходящим потоком воды и образует контактную среду, наличие которой ускоряет и улучшает процессы очистки воды. Обработанная вода, пройдя верхнюю распределительную решетку, через сборный короб выводится из осветлителя в промежуточный бак. Выделившийся в шламонакопителе осадок частично уплотняется и дренируется с продувочной водой. Продувка шламоуплотнителя осуществляется непрерывно или периодически небольшими порциями. Песок, скапливающийся в конусе днища осветлителя, периодически удаляется через дренаж осветлителя.

Осветлители со взвешенным слоем обладают по сравнению с осаждением взвеси из горизонтального потока воды в отстойниках следующими преимуществами: ускоряется процесс хлопьеобразования за счет каталитического влияния ранее сформированной взвеси и интенсификации массообмена, улучшаются гидравлические условия отделения твердой фазы, снижается расход реагентов вследствие более полного использования адсорбционных свойств осадка.

Осветлитель представляет собой стальной сосуд, установленный вертикально на кольцевой опоре. Верхняя цилиндрическая часть корпуса соединена при помощи конического перехода с нижней цилиндрической частью, к которой приварено коническое днище. В коническом днище установлено устройство для регулирования скорости подачи исходной воды в зону смешения с реагентами – съемное сопло.

Внутри корпуса в верхней его части установлено: устройство для удаления воздуха с распределительной системой, называемой воздухоотделителем; устройство для равномерного отвода осветленной воды в приемные баки и кольцевой сборный желоб с отводящей камерой (сборный короб).

В средней части осветлителя находятся вертикальные перегородки и горизонтальная решетка с отверстиями диаметром 100 мм.

Внутри корпуса осветлителя установлено устройство приема и уплотнения образующегося в процессе работы шлама – шламоуплотнитель. Шламоуплотнитель представляет собой цилиндр с коническим днищем.

Для отвода отстоявшейся воды из шламоуплотнителя в верхней части его

корпуса внутри имеется сбор кольцевой коллектор с отводящей трубой. Отвод воды («отсечка») осуществляется в основную отводящую камеру осветлителя.

Нижняя коническая часть шламоуплотнителя оборудована отводящей трубой для сбора шлама в режиме непрерывной продувки осветлителя. Аналогическое устройство выполнено в коническом днище осветлителя для периодической продувки.

Для контроля за процессом обработки воды осветлитель снабжен пробоотборными устройствами.

На ХВО установлены два осветлителя, один из которых находится в работе, другой – в ремонте или резерве. После умягчения в осветлителе вода собирается в двух промежуточных баках, емкостью 630 м3 каждый для дальнейшей очистки.

Коллоидные частицы имеют малые размеры, а природная вода, содержащая их, отличается высокой устойчивостью. Это означает, что коллоидные частицы не способны к самопроизвольному слипанию и не выделяются из воды в виде твердой фазы. Причиной этого является то, что все коллоидные частицы данного вещества (глина, органические вещества) несут одноименный электрический заряд (обычно отрицательный), препятствующий их сближению и объединению в хлопьевидные относительно крупные агрегаты.

Эффективным способом коагуляции (укрупнения) является обработка коллоидных растворов специальными реагентами (коагулянтами). При определенной дозировке коагулянтов в воде образуется новая коллоидная система, частицы которой несут противоположенный по знаку природным коллоидным частицам заряд (обычно положительный). Это вызывает взаимную коагуляцию природных и вновь образованных коллоидных частиц.

После ввода в природную воду определенной дозы коагулянта вначале происходит помутнение воды, затем с течением времени образуются рыхлые видимые глазом хлопья, оседающие вниз и увлекающие за собой грубодисперсные примеси. При этом наблюдается увеличение прозрачности исходной воды.

© Рефератбанк, 2002 - 2024